
Matrix exponential based semi-supervised discriminant embedding
for image classification

F. Dornaika a,b,n, Y. El Traboulsi a

a University of the Basque Country UPV/EHU, San Sebastian, Spain
b IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

a r t i c l e i n f o

Article history:
Received 15 April 2016
Received in revised form
15 July 2016
Accepted 18 July 2016
Available online 20 July 2016

Keywords:
Graph-based semi-supervised learning
Small-sample-size (SSS) problem
Matrix exponential
Semi-supervised discriminant embedding
(SDE)
Distance diffusion mapping
Feature extraction
Image classification

a b s t r a c t

Semi-supervised Discriminant Embedding (SDE) is the semi-supervised extension of Local Discriminant
Embedding (LDE). Since this type of methods is in general dealing with high dimensional data, the small-
sample-size (SSS) problem very often occurs. This problem occurs when the number of available samples
is less than the sample dimension. The classic solution to this problem is to reduce the dimension of the
original data so that the reduced number of features is less than the number of samples. This can be
achieved by using Principle Component Analysis for example. Thus, SDE needs either a dimensionality
reduction or an explicit matrix regularization, with the shortcomings both techniques may suffer from. In
this paper, we propose an exponential version of SDE (ESDE). In addition to overcoming the SSS problem,
the latter emphasizes the discrimination property by enlarging distances between samples that belong to
different classes. The experiments made on seven benchmark datasets show the superiority of our
method over SDE and many state-of-the-art semi-supervised embedding methods.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

High-dimensional data is increasingly used in several domains
(especially in computer vision and pattern recognition fields). For
this reason, researchers have been interested in dimension re-
duction methods. These latter aim at transforming data from their
original space to a meaningfully low dimensional one where tasks
can be achieved in an efficient and accurate way. These methods
can be categorized into several groups according to their proper-
ties: are they linear or non-linear? Do they use labeled samples or
unlabeled ones (supervised, unsupervised and semi-supervised)?
Principal Component Analysis (PCA) [1] is the most known di-
mensionality reduction method. It consists of an unsupervised
features extraction method whose purpose is to project data in the
direction of the maximal variance of the original data and so to
make data reconstruction process as efficient as possible. Local
Discriminant Analysis (LDA) [2] is a supervised method that, in
addition to dimensionality reduction, helps in data discrimination.
Kan et al. and Pang et al. propose the Adaptive Discriminant
Learning (ADL) method [3] and the Regularized Locality Preserving
Discriminant Embedding (RLPDE) method [4] respectively, which
are two variants of LDA. PCA and LDA are intrinsically linear but,

using the kernel trick, nonlinear versions have been proposed:
Kernel PCA [5] and Kernel Fisher Discriminant analysis (KFD) [6]
respectively. Local Discriminant Embedding (LDE) [7] is a su-
pervised method that was proposed to overcome some limitations
of LDA. It uses the neighborhood relation between samples when
constructing the embedding and thus, is not affected by the dis-
tribution of data [8]. Due to their contribution to the dimension-
ality reduction methods, graph-based methods recently received a
lot of attention by researchers [9–14]. Many graph-based nonlinear
methods that preserve the intrinsic structure of data have been
recently proposed: Locally Linear Embedding (LLE) [15], Laplacian
Eigenmaps (LE) [16] and isometric mapping (ISOMAP) [17]. De-
spite the superior ability of nonlinear methods in improving the
classification process when dealing with unlabeled samples, most
of them suffer from the out-of-sample problem (i.e., there is no
straightforward tool to predict the class of unseen data samples).
For this reason, many significant efforts have been made in order
to linearize some nonlinear methods by forcing the mapping
model to be linear. In this context, Niyogi linearized Laplacian
Eigenmaps (LEs) by proposing the Locality Preserving Projections
(LPPs) method [18], and He et al. linearized Locally Linear Em-
bedding (LLE) by introducing Neighborhood Preserving Embed-
ding (NPE) [19]. Despite the fact that generally supervised meth-
ods outperform unsupervised ones, collecting labeled samples is
too expensive or unfeasible in many real applications. In contrast,
unlabeled samples are abundant and easy to obtain. For this
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reason, researchers are recently more and more interested in
methods that use both labeled and unlabeled samples in the
learning phase [20–23]. These methods are called semi-supervised
methods. In this kind of approaches, labeled data are used in the
aim of bringing samples belonging to the same class and widen
distances between samples belonging to different classes. Gaus-
sian Fields and Harmonic Functions (GFHFs) [24] and Local and
Global Consistency (LGC) [13] are two well-known label propa-
gation semi-supervised methods. These latter can only work on
transductive setting in which labeled samples and unlabeled (test)
ones are required during the learning phase. Cai et al. extended
LDA into its semi-supervised version SDA [25] by adding a reg-
ularizer that preserves data smoothness. In the same way, LDE was
also extended to its semi-supervised version Semi-supervised
Discriminant Embedding (SDE) [7] by adding a similar regularizer.
SDA and SDE are not limited to any transductive setting (i.e., they
can project unseen data samples also to the new subspace).

Despite its high discriminative ability, in the absence of reg-
ularization, SDE suffers from the small-sample-size (SSS) problem
when the number of samples is not sufficient. This problem occurs
particularly when the number of observations is smaller than the
dimension of a sample.

Using the matrix exponential, in this paper we propose an
extended version of SDE called Exponential SDE (ESDE). The pro-
posed method has two motivations. Firstly, it solves the SSS pro-
blem without any mandatory dimensionality reduction. Secondly,
it preserves the discriminant nature of SDE and improves its effi-
ciency by increasing the distances between samples belonging to
different classes. In the literature, it should be noticed that matrix
exponential was used for unsupervised and supervised learning
schemes. To the best of our knowledge, this paper is the first work
using the exponential framework for graph-based semi-su-
pervised learning.

The most important properties that characterize our frame-
work can be summarized as follows:

� ESDE overcomes the SSS problem without any information loss
regardless of the dimension of the input samples.

� Unlike many dimensionality reduction methods, ESDE does not
suffer from any transductive setting: it is straightforward to
predict the embedding of any new (unseen) data sample since
ESDE provides a linear transform.

� Unlike label propagation methods whose prediction is limited
to the class of samples, our approach includes their embedding
into the low dimensional subspace. Therefore, we have the
freedom to choose the most convenient classifier.

� Since ESDE is an extension of SDE, it inherits its discriminant
property based on the locality preserving scatter matrices, and
also improves its performances.

This paper is organized as follows: in Section 2, we will review the
most interesting graph-based learning methods, including the
classic SDE. Our proposed method is introduced in Section 3.1.
Section 4 presents the theoretical analysis of the proposed frame-
work. Experimental work carried out on seven benchmark data-
bases is presented in Section 5. Finally, in Section 6 we present our
conclusion.

2. Related work

This section is dedicated to the description of some related
state-of-the-art methods, namely: Local Discriminant Embedding
(LDE) [7], Exponential Local Discriminant Embedding (ELDE) [26]
and Semi-supervised Discriminant Embedding (SDE) [7]. In this
paper capital bold letters denote matrices and small bold letters

denote vectors.

2.1. Notations and preliminaries

Given N training samples, … ∈ x x x, , , N
D

1 2 where D is the
dimension of each sample, we suppose that

= [ … … ] ∈+ +
×X x x x x x, , , , , ,l l l u

D N
1 2 1 , where l is the number of

labeled samples and u is the number of unlabeled ones ( = +N l u),
is the train matrix which includes all training samples. Let

= [ … ] ∈ ×X x x x, , , l
D l

1 2 denote the matrix of labeled samples,
and let ∈ { … }y C1, 2, ,i denote the label of xi ( ∈ { … }i l1, 2, , )
where C is the number of classes, and nc ( ∈ { … }c C1, 2, , ) is the
number of labeled samples belonging to the class c. We assume
that S is the similarity matrix defined by ( ) = ( )i j simS x x, ,i j where

( )sim x x,i j represents a score related to the similarity between
samples xi and xj. The Laplacian matrix L corresponding to S is
defined by = −L D S where D is a diagonal matrix whose elements
are the row (or column since the similarity matrix is symmetric)
sums of S. We will define two graphs: the within-class graph

∈ ×Sw
l l and the between-class graph ∈ ×Sb

l l. These two graphs
are dedicated to labeled samples. The first one is defined by

( ) = ( )i j simS x x, ,w i j if xi and xj belong to the same class and
( ) =i jS , 0w otherwise. The second one is defined by

( ) = ( )i j simS x x, ,b i j if xi and xj belong to different classes and
( ) =i jS , 0b otherwise. We assume that Lw and Lb are the Laplacian

matrices (defined similarly to L) associated to Sw and Sb
respectively.

2.2. Local discriminant embedding (LDE)

LDE is a supervised dimensionality reduction method that aims
to maximize the similarity between samples belonging to the
same class and the divergence between samples sharing dissimilar
classes [27]. To this end, the intrinsic graph Gw and the penalty
graph Gb are defined. The subset ( )N xw i refers to the neighborhood
of xi sharing its label (e.g. K1 nearest neighbors), and ( )N xb i refers
to the neighborhood of xi sharing a label different of its own (e.g.
K2 nearest neighbors). We stress the fact that K1 and K2 are two
different parameters. The similarity matrices of these two graphs
are defined by:

( ) =
( ) ∈ ( ) ∈ ( )

( )
⎪

⎪⎧⎨
⎩i j

sim N N
S

x x x x x x
,

, if or

0, otherwise 1
w

i j j w i i w j

( ) =
∈ ( ) ∈ ( )

( )
⎪

⎪⎧⎨
⎩i j

N N
S

x x x x
,

1 if or

0, otherwise 2
b

j b i i b j

where ( )sim x x,i j is a score that represents the similarity between
xi and xj.

The linear transformation matrix that projects samples from
their original space into the subspace targeted by LDE is obtained
by optimizing the following criteria:

∑ ∑ ∥ ( − )∥ ( ) = ( )
( )

i jW x x S W X L X Wmin
1
2

, min tr
3i

l

j

l
T

i j w
T

w
T

W W

2

∑ ∑ ∥ ( − )∥ ( ) = ( )
( )

i jW x x S W X L X Wmax
1
2

, max tr
4i

l

j

l
T

i j b
T

b
T

W W

2

where tr (.) denotes the trace of a matrix, X is the matrix of la-
beled samples, Lw and Lb are the Laplacian matrices associated to
Sw and Sb respectively and W is the projection matrix. Optimizing
the problem represented by Eqs. (3) and (4) is equivalent to
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