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a b s t r a c t

Many real-world pattern recognition problems can be modeled using multiple-instance learning (MIL),
where instances are grouped into bags, and each bag is assigned a label. State-of-the-art MIL methods
provide a high level of performance when strong assumptions are made regarding the underlying data
distributions, and the proportion of positive to negative instances in positive bags. In this paper, a new
method called Random Subspace Instance Selection (RSIS) is proposed for the robust design of MIL
ensembles without any prior assumptions on the data structure and the proportion of instances in bags.
First, instance selection probabilities are computed based on training data clustered in random sub-
spaces. A pool of classifiers is then generated using the training subsets created with these selection
probabilities. By using RSIS, MIL ensembles are more robust to many data distributions and noise, and are
not adversely affected by the proportion of positive instances in positive bags because training instances
are repeatedly selected in a probabilistic manner. Moreover, RSIS also allows the identification of positive
instances on an individual basis, as required in many practical applications. Results obtained with several
real-world and synthetic databases show the robustness of MIL ensembles designed with the proposed
RSIS method over a range of witness rates, noisy features and data distributions compared to reference
methods in the literature.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Multiple-instance learning (MIL) is a form of weakly-
supervised learning [1], where data instances are grouped into
bags. A label is not provided for each instance, but for a whole bag.
Typically, a negative bag contains only negative instances, while
positive bags contain instances from both classes [2].

Since the first formulations of the MIL problem [2,3] many
solutions have been proposed. In many cases, MIL algorithms were
developed with a specific application in mind. For instance, Diet-
trich [2] proposed Axis Parallel Rectangle (APR) to solve a mole-
cule classification problem. Later, many methods were proposed to
solve image categorization [4–8], web mining [9,10], object and
face detection [11–15] and tracking [16] problems. While they can

achieve a high level of performance in their respective application
domains, many of these methods are less efficient over a wide
variety of data distributions and pattern classification problems.

For instance, many methods rely on the assumption that the
proportion of positive instances in positive bags, hereafter called
witness rate, is high. Sometimes, these methods implicitly assume
that all instances in a positive bag are positive. This is the case for
methods such as APR [2], Citation-kNN [17] and diverse density-
based (DD) methods [5,6,18,19]. This assumption is also made in
the initialization of the optimization process in mi-SVM and MI-
SVM [4]. Other methods assume a high witness rate by repre-
senting bags as the average of the instances it contains, as in MI-
Kernel [20] and MIBoosting [21]. The performance of all these
methods decreases when the high witness rate assumption is not
verified, which limits the applicability of MIL methods to many
problems. For instance, until recently, object identification systems
were limited to problems where instances represent slight trans-
lational and scale uncertainties around localization bounding
boxes [15].
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To deal with lower witness rates, Gehler and Chapelle [22]
applied deterministic annealing to an SVM-based MIL algorithm.
Bunescu and Mooney [23] enforced the constraint that positive
bags contain at least one positive instance in their SVM formula-
tion. Both obtained good results with lower witness rates, but
observed performance degradation with higher witness rates.
SVR-SVM [24] and the γ-rule [25] have been proposed to overcome
these problems by estimating the witness rate and then using it as
a system parameter. These techniques provide a high level of
performance over a range of high and low witness rates, yet, the
witness rate is assumed to be constant across all bags. This
assumption proves to be problematic in some applications, such as
image categorization [26], where images are segmented and fea-
tures are extracted from the different segments [4,5]. The image
corresponds to a bag, while each segment is an instance.
Depending on the visual complexity of the image, a different
proportion of target and non-target segments will be obtained.
Therefore, the witness rate of a bag depends on the image content,
and is likely to vary from one bag to another.

Another challenge of MIL problems is the fact that the shape of
positive and negative distributions affect the performance of some
algorithms. For instance, some methods such as APR [2] are not
designed to deal with multi-modal distributions where instances
are grouped in distinct clusters. Methods based on DD [5,6,18,19]
assume that positive instances form a compact cluster [7]. In MILIS
[7], the negative distribution is modeled with Gaussian kernels,
which can be difficult when the quantity of data available is lim-
ited. On the other hand, in Citation-kNN [17] the presence of
compact data cluster in the negative distribution increases the
probability of misclassification.

Finally, some methods classify bags as a whole instead of trying
to label each instance individually. Some of these methods
[17,20,27,28] use different types of bag distance measure, while
others embed bags using distance to a set of prototypes [6,7,5],
vocabulary [29] and sparse coding [30]. Bag-level classification
approaches cannot identify instances individually, which is
necessary in certain applications such as object detection and
tracking in images or videos. Moreover, by considering bags as a
whole, the performance of these methods often decreases in
problems where the witness rate is low.

To address these limitations, this paper proposes a new
ensemble-based method for MIL called Random Subspace Instance
Selection (RSIS). Classifier ensembles are generally known to
provide accurate and robust classification systems when data is
limited [31]. The key feature of RSIS is that it constructs classifier
ensembles based on a probabilistic identification of positive
instances. The proposed method allows to classify instances indi-
vidually and does not rely on a specific witness rate or specific
type of data distribution. It can therefore be applied in a wide
variety of context.

In the proposed method, the training data is projected onto
several random subspaces before being clustered. The proportion
of instances from positive and negative bags is computed for every
cluster. Based on these bag proportions, a positivity score is com-
puted for every instance in the data set. These scores are later
converted into selection probabilities, and used to select diverse
training sets to generate base classifiers in the ensemble. The
general intuition for RSIS is that it is easier to identify positive
instance clusters while only considering a discriminant subset of
features. The optimal feature subset to represent a given concept is
unknown, and may vary from one concept to another. However, if
a data set is projected into all possible subspaces, instances from
the same concept are more likely to be grouped together than with
the other instances.

The RSIS method allows to design MIL ensembles that are
robust to various witness rate, because each time one of the

classifiers in the ensemble is trained, only one instance is used
from each bag. The instances are drawn based on their probability
of being positive. If the witness rate is low and only one instance is
likely to be positive, this instance will be the only one selected. In
contrast, if many instances appear to be positive, each instance
will have a similar probability of being selected, and thus being
used as a training instance in one or another classifier. Since
selection probabilities are computed for each bag separately, the
witness rate does not have to be constant across all bags. More-
over, by clustering the data in many different subspaces, RSIS can
inherently uncovers multiple underlying concepts in the data
distributions. This makes the algorithm resistant to multi-modal
distributions of various shapes, and robust to noisy or irrelevant
features.

In this paper, the performance of MIL ensembles designed
using RSIS is compared to several methods in the literature using
benchmark data sets. Further experiments are performed on
synthetic data sets to study the algorithm's tolerance to various
multi-modal distributions, witness rate and irrelevant features.
Five well-known baseline methods, APR [2], Citation-kNN [17], mi-
SVM [4], AL-SVM [22] and CCE [32] are also used for comparison.
Finally, the sensitivity of the proposed approach to internal para-
meters is also characterized experimentally, and some general
guidelines for parameter selection are provided.

The remainder of this paper is organized as follows. The MIL
problem is formalized and state-of-the-art techniques are
reviewed in Section 2. Then, in Section 3, the proposed RSIS
algorithm is described. Section 4 presents the experimental
methodology. Section 5 presents robustness experiments on syn-
thetic data, while Sections 6 and 7 present experimental results on
benchmark data sets, and experiments on parameter sensitivity
respectively. Time complexity is discussed in Section 8.

2. Multiple instance learning

Let B¼ B1;B2;…;BZ
n o

be a set composed of Z bags.1 Each bag Bi

corresponds to a positive or negative label LiA �1; þ1f g in the set
L¼ L1; L2;…; LZ

n o
, and contains Ni feature vectors: Bi ¼

xi
1; x

i
2;…; xi

Ni

n o
where xi

j ¼ ðxij1; xij2;…; xijdÞARd. Each of these fea-
ture vector instances corresponds to a positive or negative label in
the set Yi ¼ yi1; y

i
2;…; yi

Ni

n o
, where yijA �1; þ1f g. Instance labels

are unknown in positive bags, but are assumed negative in nega-
tive bags. A bag is labeled positive if at least one instance con-
tained in the bag is labeled positive [2]:

Li ¼
þ1 if (yAYi : yij ¼ þ1;

�1 if 8yAYi : yij ¼ �1:

8<
: ð1Þ

Many methods have been proposed over the years to address
MIL problems in a variety of domains. An overview of these
methods and a review of the MIL assumptions can be found in
recent surveys by Amores [33] and Foulds and Frank [34]. In the
taxonomy proposed by Amores, [33] MIL methods are divided in
three categories, based on how bags are represented. A first corpus
of methods operates at the instance level. Each instance is classi-
fied individually, and scores are aggregated to label bags. The two
other types of method operate on the bag level. In one case, bags
are mapped to a vector representation, which reformulate the MIL
problem as a standard supervised classification problem, while in

1 Throughout this paper, upper indexes are used to denote bags, while lower
indexes designate instances. For the sake of clarity, when unnecessary, these
indexes are omitted.
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