Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/09205861)

Catalysis Today

iournal homepage: www.elsevier.com/locate/cattod

K-supported catalysts for diesel soot combustion: Making a balance between activity and stability

Qian Li^a, Xiao Wang^a, Hui Chen^a, Ying Xin^a, Guangkai Tian^a, Chenxi Lu^a, Zhaoliang Zhang^{a,∗}, Lirong Zheng^b, Lei Zheng^b

a School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China **b Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China**

a r t i c l e i n f o

Article history: Received 15 May 2015 Received in revised form 13 July 2015 Accepted 15 July 2015 Available online 7 August 2015

Keywords: Soot combustion Free K⁺ ions Activity Stability Cryptomelane

A B S T R A C T

Two typical K-supported oxides $(K/AI_2O_3$ and $K/TiO_2)$ were selected as catalysts for diesel soot combustion in order to evaluate the relationship between activity and stability. The surface species were first characterized by X-ray powder diffraction (XRD), X-ray absorption fine-structure (XAFS), infrared analysis (IR), X-ray photoelectron spectroscopy (XPS), in situ IR of $CO₂$ adsorption and temperatureprogrammed desorption of $CO₂$ (CO₂-TPD). Then the activity was studied by temperature-programmed oxidation (TPO), temperature-programmed reduction with soot (Soot-TPR) and in situ IR of soot combustion reactions. Lastly, the stability of the catalyst was checked by washing with water and analysis for K. This showed that K/TiO₂ displayed negligible activity due to the immobilization of K⁺ ions in TiO₂ to form $K_2Ti_6O_{13}$. However, K/Al_2O_3 exhibited superior activity owing to the presence of active free K⁺ ions on the surface. The downside is the leaching of K^* ions into the effluent containing some water vapor, resulting in its poor stability – the other side of the coin for the highly active free K species. One of the suggested strategies for making a balance between activity and stability is encapsulating active K species in the channel of the catalyst as demonstrated by the tunneled cryptomelane.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Soot (black carbon) from diesel engines exerts harmful effects on the environment and human health $[1-3]$. In particular China has suffered severe haze problems (PM2.5) since 2013 [\[4\].](#page--1-0) Soot particulates from diesel engines are important sources of PM2.5. The use of a Diesel Particulate Filter (DPF) is the most effective control technology for diesel soot emissions [\[5\].](#page--1-0) However, DPFs must be regenerated by combustion of the accumulated soot $[6]$, whereas catalytic technology is the most effective and economicaltechnique [\[7\].](#page--1-0) Now the main objective is the development of highly active catalysts [\[8–11\].](#page--1-0)

Catalysts containing potassium (K) have attracted increasing attentions owing to their high activity for soot combustion [\[12–18\].](#page--1-0) Many groups [\[19–23\]](#page--1-0) have done pioneering and extensive studies for this kind of catalyst system, including evaluation and screening of various catalytic materials, the effects of the soot-catalyst contact and mobility of catalysts, as well as the influence of supports, etc. Generally, K is thought to act as a molten salt with the

∗ Corresponding author. E-mail address: chm [zhangzl@ujn.edu.cn](mailto:chm_zhangzl@ujn.edu.cn) (Z. Zhang).

[http://dx.doi.org/10.1016/j.cattod.2015.07.036](dx.doi.org/10.1016/j.cattod.2015.07.036) 0920-5861/© 2015 Elsevier B.V. All rights reserved. ability of improving catalyst (solid)-soot (solid) contact by increasing surface mobility. However the deactivation of this kind of catalysts is unavoidable resulting from the loss of K either by sublimation at high temperatures $[24,25]$ or dissolution of the K⁺ ions in the diesel exhaust, which typically contains water vapor [\[26\].](#page--1-0) Neyertz et al. clearly found that the $K/Ce_{0.65}Zr_{0.35}O_2$ catalysts were deactivated after the severe aging treatment due to K volatility [\[24\].](#page--1-0) An et al. also attributed the degradation of K-containing catalysts to the sublimation of K during the soot combustion process [\[25\].](#page--1-0) More importantly, it is known that diesel exhaust typically contains 5-7% water vapor at temperatures of 250–600 ℃. Besides, condensed water is also present in the cases of cold start or long traffic-jam in winter [\[26\].](#page--1-0) Such K-containing catalysts can be readily degraded due to the leaching of active free K species [\[13,18\].](#page--1-0) Consequently great efforts have been made by many researchers to enhance the stability of K-containing catalysts. Incorporating K^+ ions into oxides has a great potential to effectively stabilize K^+ ions $[27-29]$. However, once K^+ ions were immobilized in the lattice of the oxides, lower activity and higher soot oxidation temperatures were observed [\[25,30\].](#page--1-0)

Thus, we aimed at deeply studying the relationship between activity and stability for catalysts containing potassium. Ksupported single oxides were chosen in this work. In order to

fabricate different kinds of K species with various mobility or stability, it is needed to choose supports with different acidity. By this way, various degrees of interaction between K and supports can be controlled, leading to the difference of the stability for these Ksupported catalysts. From this point of view, two typical oxides, Al_2O_3 and TiO₂ were selected in consideration of their wide applications in acidic supports. It is well known that $TiO₂$ is more acidic than Al_2O_3 . Higher stability for K/TiO₂ can be obtained than that for K/AI_2O_3 , leading to their differences in activities for catalytic soot combustion. Based on these ideas, the existential states of K species on K/Al_2O_3 and K/TiO_2 were elucidated at first by conventional and especially state-of-the-art characterization techniques. Then, the active sites and their contributions to the catalytic activity, as well as the reaction mechanism for K-containing catalysts were clarified. It is found that activity and stability are two sides of the coin that need to be balanced. One promising strategy is finally suggested for K-containing catalysts, which is to encapsulate active K species in the channel of the catalyst, as demonstrated by the tunneled cryptomelane.

2. Experimental

2.1. Catalyst preparation

The catalysts were prepared by impregnating single oxides $(Al₂O₃$ and TiO₂) with an aqueous solution of $K₂CO₃$. Al₂O₃ and TiO₂ are supplied by Xinmeiyu Alumina Co., Ltd. of China and Sinopharm Chemical Reagent Co., Ltd. of China, respectively. Prior to the preparation, the oxides were heat-treated at 850 ◦C in air for 2 h. By characterization by XRD (Fig. 1), it can be seen that Al_2O_3 consists of ξ-Al $_2$ O $_3$ and δ-Al $_2$ O $_3$. While for TiO $_2$, both anatase and rutile are present. Then suspensions of the oxides in aqueous solutions of potassium carbonate were evaporated while being stirred at 90 ◦C until a paste was achieved which was then dried at 120 ◦C overnight and calcined at 850 \degree C in air for 2 h. These prepared catalysts were designated as K/AI_2O_3 and K/TiO_2 . According to our previous work [\[31\],](#page--1-0) the theoretical weight loading amount of K is determined as 8 wt.%.

The as-prepared samples are also referred to as fresh catalysts and the weight loading amounts of K were measured by ICP and XRF, as listed in Table S1. It can be seen that almost all of the supported K can be maintained even after calcination at 850 ◦C. The fresh samples after washing by water were denoted as K/Al_2O_3 -w and $K/TiO₂$ -w, respectively, which were obtained by stirring the suspension of the fresh catalysts in deionized water at room temperature for 24 h, then filtering, drying at 120° C overnight and calcination at 850 ◦C in air for 2 h.

2.2. Catalyst characterization

Powder X-ray powder diffraction (XRD) patterns were recorded on a Rigaku D/max-rc diffractometer.

Surface area and pore size distribution were determined by N2 adsorption–desorption at 77K using the BET method with a Micromeritics ASAP 2020 instrument after off gassing at 300 ◦C for 5 h prior to analysis.

X-ray absorption fine-structure (XAFS) measurements for the K K-edge were performed on the XAFS station of Beijing synchrotron radiation facility (BSRF, Beijing, China). K K-edge (3608 eV) data were collected at the 4B7A beam line of the spectra in the fluorescence mode with a Si (Li) detector.

IR experiments were carried out using a FTIR spectrometer (Bruker Tensor 27) over the range 400–4000 cm−¹ with 32 scans at a resolution of 4 cm^{-1} . The samples were diluted with KBr in a ratio of 1:100.

Fig. 1. XRD patterns of supports, fresh catalysts and those after water-washing treatment: (a) K/Al_2O_3 ; (b) K/TiO_2 .

X-ray photoelectron spectroscopy (XPS) data were obtained on an AXIS-Ultra instrument from Kratos Analytical using monochromatic Al K α radiation (225 W, 15 mA and 15 kV) and low-energy electron flooding for charge compensation. To compensate for surface charge effects, the binding energies were calibrated using the C 1s hydrocarbon peak at 284.80 eV.

X-ray fluorescence (XRF) experiments were performed on a ZSX Primus II instrument from Rigaku.

Inductively coupled plasma-atomic emission spectrometer (ICP-AES) experiments were carried out on an IRIS Intrepid IIXSP instrument from Thermo Elemental.

Temperature-programmed desorption of $CO₂$ (CO₂-TPD) experiments were carried out in a fixed bed micro-reactor consisting of a quartz tube (6 mm i.d.). A 50 mg catalyst was pretreated in He (100 mL/min) at 850 °C for 1 h and then cooled to 250 °C in He. When the temperature stabilized at 250 \degree C, 3976 ppm CO₂ in He (100 mL/min) was introduced. After saturation, the flow was switched to He (100 mL/min) to flush the sample to remove the weakly adsorbed species at 250 \degree C and then cooled to 150 \degree C. Desorption was then conducted by heating the catalyst from 150 to 850 °C at a temperature ramp of 10 °C/min in He (100 mL/min). The sample was held at 850 °C until the completion of $CO₂$ desorption. The desorbed $CO₂$ was detected by a quadruple mass spectrometer (MS, OminiStar 200, Balzers). The amount of $CO₂$ adsorbed at 250 °C was calculated by the integration of the $CO₂$ desorption peaks.

Download English Version:

<https://daneshyari.com/en/article/53312>

Download Persian Version:

<https://daneshyari.com/article/53312>

[Daneshyari.com](https://daneshyari.com)