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a b s t r a c t

Ensemble methods, which combine generic binary classifier scores to generate a multi-classification
output, are commonly used in state-of-the-art computer vision and pattern recognition systems that rely
on multi-classification. In particular, we consider the one-vs-one decomposition of the multi-class pro-
blem, where binary classifier models are trained to discriminate every class pair. We describe a robust
multi-classification pipeline, which at a high level involves projecting binary classifier scores into
compact orthogonal subspaces, followed by a non-linear probabilistic multi-classification step, using
Kernel Density Estimation (KDE). We compare our approach against state-of-the-art ensemble methods
(DCS, DRCW) on 16 multi-class datasets. We also compare against the most commonly used ensemble
methods (VOTE, NEST) on 6 real-world computer vision datasets. Finally, we measure the statistical
significance of our approach using non-parametric tests. Experimental results show that our approach
gives a statistically significant improvement in multi-classification performance over state-of-the-art.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For the task of multi-classification, most research focuses on
one of the following:

� Developing a dedicated multi-class classifier (e.g. random for-
ests [1]).

� Extending an existing binary classifier to deal with multiple
classes, via an internal joint optimization step over multiple
classes (e.g. SVC by Crammer/Singer [2], Structured SVM [3]).

� Dividing the multi-classification problem into a set of binary
classification problems, followed by an ensemble method to
combine the binary classifier scores into a multi-classification
output.

We focus on the last item in the list. Binary classifiers are
typically easier to build, faster to train/test and have much simpler
decision boundaries when compared to dedicated multi-class
classifiers. Moreover, for complex multi-class problems with a
large number of classes and/or high feature dimensionality, the
more practically viable option is usually to divide the multi-
classification problem into several smaller easy-to-solve binary
classification problems.

Several binary decomposition strategies exist for the multi-
class problem, with the most popular ones being the one-vs-all
(OVA [4]) and one-vs-one (OVO [5]) schemes. In OVA, a binary
classifier is trained for each class, designed to distinguish it from
the remaining classes. OVO, on the other hand, trains a binary
classifier to distinguish between every pair of classes. Yet another
decomposition strategy, that can be viewed as a generalization of
OVO and OVA, is the error-correcting-output-code (ECOC [6]) fra-
mework, in which each class is assigned a unique fixed length
binary codeword, after which a binary classifier for each bit posi-
tion is trained, based on the codewords for all the classes. Minimal
design ECOCs offering competitive performance have also been
proposed [7], for which the number of binary classifiers required is
sub-linear in the number of classes.

Rifkin and Klautau argued that OVA can match OVO perfor-
mance, provided that the binary classifiers are well tuned [8].
Their analysis is however restricted to regularized classifiers such
as SVMs, and is not applicable for generic binary classifiers. The
OVO scheme typically provides better results than the OVA or ECOC
scheme [3,9]. OVO is also more robust over various choices of
binary classifiers and provides better scalability with a relative
performance boost over OVA as the number of classes increases
[10]. OVO is also surprisingly faster to train than OVA (and some-
times even ECOC), despite training more binary classifiers. This is
because each OVO binary classifier is trained only on samples from
a specific pair of classes, whereas each binary classifier in OVA or
ECOC is trained using samples from all classes. Furthermore, when
parallel computing is available, all OVO pairwise classifiers can be
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trained in a massively parallel fashion, even for a very high
number of classes.

After a binary decomposition of the multi-classification pro-
blem, the resulting binary classifier scores are aggregated to yield
a final multi-classification output by strategies that are referred to
as ensemble methods [11]. Our contribution is a new OVO ensemble
method using KDE over PCA projections of binary classifier scores
that is robust, yields probabilistic multi-class outputs and out-
performs the most commonly used alternatives VOTE/NEST.

The rest of the paper is organized as follows: Section 2 details
related work in OVO ensemble methods. Section 3 introduces
notations, formalizes the notion of an ensemble method and
describes our proposed approach. Section 4 is dedicated to Kernel
Density Estimation (KDE), along with a PCA projection based
approximation to multi-variate KDE which we use to obtain our
probabilistic multi-class decisions. Sections 5 and 6 describe the
experiments to test our approach against the state-of-the-art and
contain a discussion of the results. Finally, we conclude in Section
7 with a summary of our proposed approach, its novel contribu-
tions and potential future improvements.

2. Related work

The most common OVO ensemble method is the naïve voting
scheme (VOTE [12]), where all pairwise binary classifiers vote for
the class of an unseen sample. The class with the highest number
of votes is chosen as the predicted class. An improvement to VOTE
is the nesting one-vs-one scheme (NEST [13]), which augments VOTE
with a recursive tie-breaking scheme for instances where there are
ties for the class with the highest vote. Several other ensemble
methods have been proposed for OVO schemes, such as weighted
voting (WV [14]), Pairwise Coupling (PC [15,16]), decision directed
acyclic graph (DDAG [17]), learning valued preference for classifica-
tion (LVPC [18]), preference relations solved by non-dominance cri-
terion (ND [19]) and binary tree of classifiers (BTC [20]).

An excellent overview and a detailed experimental study of
these OVO ensemble methods for various choices of binary classi-
fiers are provided in [10]. Their results indicate that there is no
“one method which performs best for all binary classifiers.” The
methods which perform consistently well, regardless of the choice
of binary classifiers, are in fact the ones that are the simplest to
explain: VOTE and NEST. Most of the popular machine learning
software libraries used extensively by researchers, such as LibSVM,
use VOTE as their ensemble method.

2.1. Limitations of VOTE, NEST

For a multi-classification problem with K classes, the OVO
scheme trains KðK�1Þ=2 binary classifiers to distinguish between
each pair of classes. For a test sample belonging to a class A, there
will be ðK�1ÞðK�2Þ=2 classifiers that have never seen any sample
from class A. The predictions of any of these classifiers for the
sample become arguably questionable. This is a recurring issue for
all OVO ensemble methods, often referred to as the non-
competence problem [21].

Considering the fact that both the VOTE and NEST methods
disregard the relative magnitudes of the classifier scores com-
pletely and focus only on the binary predictions (votes), the vote
given by a non-competent classifier is given the same weight as the
vote carried by a competent one, which may affect results nega-
tively. The success of the VOTE or NEST method, despite this lim-
itation, is justified by the inherent redundancy in the OVO fra-
mework, with the rationale that the ðK�1Þ competent classifier
votes more than compensate for the apparently random votes of

the non-competent classifiers, which are usually not directed in
favor of any one particular class.

However, there may be cases where this assumption is violated,
especially for samples that tend to be confused between a pair and
small subset of classes. Such samples tend to have several classes
with a comparable (albeit low) vote count. The votes of non-
competent classifiers, in this case, tend to have a stronger influence
on the final prediction.

In order to overcome this limitation, a mechanism needs to be
devised to efficiently utilize the information contained in the
magnitudes of the scores. However, the raw scores for different
OVO classifiers are not calibrated, centered at different thresholds,
and have a potentially different scale and range. So, it would be
unwise to use raw score magnitudes in any multi-classification
scheme. The most intuitive way to make the scores of different
OVO classifiers comparable is to convert them to probabilities.

2.2. Addressing the non-competence problem

A couple of approaches, DCS [22] and DRCW-OVO [23], have
been recently proposed which specifically aim to reduce the non-
competence effect. Both these techniques focus on removal (DCS) or
reweighting (DRCW-OVO) of non-competent classifiers and can in
fact be used as a pre-processing step for any subsequent OVO
ensemble method (in place of weighted voting used in DCS and
DRCW).

In DCS (Dynamic Classifier Selection), 3K nearest neighbors in
the training data are first computed for each test sample based on
the original feature space. An i-vs-j OVO classifier is flagged as non-
competent (and removed) with respect to a given test sample, if its
3K neighbors contain no samples from either of class i or class j.

In DRCW-OVO (Distance-based Relative Competence Weighting),
distances ðd1;…; dK Þ are computed for each test sample, where di is
the average distance to the 5 nearest neighbors from class i training
samples in the original feature space. Subsequently, the score sij of
each i-vs-j OVO classifier is reweighted as snij ¼ sijnd

2
j =ðd2i þd2j Þ. The

rationale behind this transformation is that the scores for the
competent classifiers will be skewed more in favor of the true class
whereas the scores of the non-competent classifiers will not be
affected as much (due to the ratio d2j =ðd2i þd2j Þ being closer to 0.5).

2.3. Probability estimates for binary classification

The sign of a binary classifier score represents the predicted
class, while its magnitude crudely encodes the confidence of the
predicted decision. Several classifier specific methods that convert
scores to probabilities exist. For max-margin classifiers, such as
Linear SVM, techniques such as Platt scaling convert scores to
probabilities by means of a sigmoidal function [24,25]. On the other
hand, for classifiers such as Naïve Bayes, Platt scaling performs
poorly while isotonic regression [26] gives better probability esti-
mates [27]. It is also shown in [27], that neither Platt scaling nor
isotonic regression performs well for classifiers such as neural nets,
bagged trees, and logistic regression which already provide well
calibrated scores.

2.4. Probability estimates for multi-classification

Obtaining multi-class probability estimates is a much trickier
proposition. For the OVO scheme, we are required to estimate a
probability for each class given all the pairwise binary classifier
scores. Previously proposed methods typically employ a two-step
strategy: convert each binary classifier score to a probability rij,
and then combine rij's to obtain the multi-class probabilities pi's.
The combination strategy is formulated as an optimization
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