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Zernike moments and Zernike polynomials have been widely applied in the fields of image processing
and pattern recognition. When high-order Zernike moments are computed, both computing speed and
numerical accuracy become inferior. The main purpose of this study is to propose a stable, fast method
for computing high-order Zernike moments. Based on the recursive formulas for computing Zernike
radial polynomials, this study develops stable, fast algorithms to compute Zernike moments. Symmetry
under group action and Farey sequence are both applied to shorten the computing time. The experi-
mental results show that the proposed method took 5.292 seconds to compute the top 500-order Zernike
moments of an image with 512 x 512 pixels. The normalized mean square error is 0.00124846 if 450-
order moments are used to reconstruct the image. When computing the high-order Zernike moments,
the proposed method outperformed other compared methods in terms of speed and accuracy.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Zernike moments and Zernike polynomials have been widely
applied in the fields of image processing and pattern recognition,
such as shape matching [1,2], object recognition [3-5], image
watermarking [6-8], image retrieval [9,10], signature authentica-
tion [11], and so on. Zernike moments are used in the various
applications because the Zernike basis function satisfies the
orthogonal property [12,13], implying that no redundant infor-
mation overlapped between the moments [ 14]. Another advantage
is that the magnitudes for Zernike moments are invariant to the
rotation of the represented image, thereby enabling image
matching and recognition to be performed under different orien-
tations. Since the purpose of using Zernike moments is to expand
an image into a series of coefficients with respect to orthogonal
bases, the precision of pattern representation depends upon the
number of moments used from the expansion. The low-order
moments mainly represent the global contour of a pattern while
the higher-order moments describe the detail. High-order
moments are especially important for biometric studies because
those human characteristics are subtle and complex patterns,
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requiring to represent as detailed as possible. For example, Had-
dadnia et al. [15] proposed a method for face recognition using a
localization of facial information and high-order pseudo Zernike
Moments as features and a radial basis function neural network as
the classifier. Gayathri and Ramamoorthy [16] utilized high-order
Zernike moments to verify palm prints. The reason for using high-
order moments is that high-order Zernike moments can describe
the detailed pattern content.

Computation of Zernike moments is considered a complex and
lengthy process because the definition of Zernike polynomials
involves factorial and trigonometric functions [17,18]. The product
of those several functions results in a long number which takes a
considerable time to compute. Moreover, the definition of each
Zernike polynomial is independent of any other orders, though
Zernike moments involve a hierarchical relationship. This means
that each Zernike moment must be independently computed
without taking any intermediate results from its lower-order
moments. As a high-order moment is computed, its computation
time greatly increases. For these reasons, two research issues—
computing speed and numerical accuracy—arise when high-order
Zernike moments are computed.

With regard to the issue of computing speed, the direct
method, which follows the original definition to compute, takes an
excessive amount of time to compute Zernike moments. To reduce
computational complexity, Chong et al. [19] proposed the g-
recursive method and performed a comparative analysis among
several algorithms, including the direct method, Belkasim's [20],
Prata's [21], and Kintner's methods [22]. Singh and Walia [18]
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modified Prata's method and presented a recursive relation to
improve the computing speed. They suggested using the modified
Prata's method for low orders ( <90), and Kintner's fast method
for high orders ( > 90) of Zernike moments. Qin et al. [23] intro-
duced a recurrence relation to compute either a single Zernike
moment or a whole set of Zernike moments. The fast computation
method required fewer addition and multiplication operations and
was executed in parallel. Shakibaei and Paramesran [24] presented
a recursive formula to compute Zernike radial polynomials using a
recursive relationship among radial polynomials. The derived
recurrence relation is dependent on neither the degree nor the
azimuthal order of the radial polynomials.

As regards numerical accuracy, the computational values in
double-precision floating-point format become inaccurate when
the order is greater than 45 in the original direct method. Papa-
kostas et al. [17] analyzed the causes of computing errors in Zer-
nike moments, performed an analysis of the finite precision error
generation, and propagated the g-recursive method that computes
the radial polynomials. In comparison, a recursive method can
usually obtain more accurate values in high order than the direct
method, though computing errors still exist in the higher order.

Previous studies have reported a tradeoff between computing
speed and numerical accuracy. Furthermore, when high-order
Zernike moments are computed, both computing speed and
numerical accuracy become inferior. The main purpose of this
study is not only to propose a recursive method for fast compu-
tation, but also an algorithm to yield accurate values of high-order
Zernike moments.

2. Zernike moments and calculation methods
2.1. Zernike moments

The Zernike moments Z,,, can be regarded as the inner product
of f(x,y) with the basis function of Zernike polynomials Vn(x,y).
The Zernike moments Z,,, are defined as

n+1 ”
an :Tff(x,y)eDf(XaY)Vnm(an)dXdy (l)

where V. (x,y) denotes the complex conjugation of V,n(x,y). For a
complex number z = x+iy (x,y are real numbers and i = v — 1), the
Zernike polynomial is given by

Vam(2) = Rum(1)€™® = Rum(r)( cos (m)+i sin (m0)) 2)

where R, (1) is the Zernike radial polynomial, r = |z| = /X2 +y? is
the vector length, the order n is a non-negative integer, the
repetition m is an integer satisfying n—|m| = an even number
and |m| <n, and @ is the angle between the vector and the x-axis
counterclockwise. The radial polynomial R, (r) is expressed as
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As a given N x N pixel image is projected into the unit disc D,
the data of the image pixels can be regarded as a two-dimensional

table P(s,t) over the square A:[—-1/2,N—1/2]x[-1/2,N—1/2].
Let A(Z)=A N {(s,t)|s,t are integers}, which represents all of the
image pixels. The pixel (s,t) is projected via 7 onto the grid A,
centered at (xs,y,) =#(s,t) = (%%) This results in the
corresponding  function f(x,y) over A’ =x@A)cD and
fx,y)=f(n(s,t))=P(s,t). The discrete form of the Zernike
moments in Eq. (1) is expressed as follows:

Zum =20 +21) >3 P(s, ORun(r)(cos(m6) —i sin (m6)) (5)
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With the Zernike moments of an image f(x,y), this image can
be reconstructed by Eq. (6).
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where Re(Z) and Im(Z) denote the real part and the imaginary part
of a complex number Z, respectively. The reconstructed image
function can be expressed as

f(X,J/)= Z Zznmvnm(X,y) (7)
(nm)el

where the indexed set = {(n,m)|n <M} and M is an integer. As
much higher orders of Zernike moments are used for reconstruc-
tion, this image content can be recovered much more completely.
The original image and its reconstructed image can be compared
with regard to the content for the evaluation of the computation of
accurate Zernike moments. In comparison, the difference between
the two images can be estimated by the normalized mean square
error (NMSE), as expressed in Eq. (8). This measurement will be
used to show the performance of stable computation among dif-
ferent methods.

Dolf(x.y)—fx.y)| >dxdy
NMSE =
IpIf(x.y)|2dxdy
The subsequent Sections 2.2-2.4 present the three methods

used to calculate the Zernike moments: the direct method, the g-
recursive method, and Prata's method.

®

2.2. Direct method

The direct method follows the straightforward definition of
radial polynomials and approximates the Zernike moments as in
Eq. (5). The time complexity of the direct method is O(M>N?),
which is considered a high cost in terms of time complexity.
In addition, when the high-order moments are calculated,
the resulting moments become numerically instable and ina
ccurate [18].

2.3. q-Recursive method

The g-recursive method, proposed by Chong et al. [19], uses the
radial polynomials of higher repetition m (m is equal to the
notation q in the g-recursive method) to derive the radial poly-
nomials of the lower repetition m without involving any factorial
terms. The g-recursive relation among radial polynomials is given
by

K
Run) = KR4+ (Ko 2 ) Ru
m=n-4, n—6,...,1 (or 0) 9
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