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This paper addresses the Bayesian estimation of the discriminative probabilistic latent models, especially
the mixture models. We develop the max-margin factor analysis (MMFA) model, which utilizes the latent
variable support vector machine (LVSVM) as the classification criterion in the latent space to learn a
discriminative subspace with max-margin constraint. Furthermore, to deal with multimodally dis-
tributed data, we further extend MMFA to infinite Gaussian mixture model and develop the infinite max-
margin factor analysis (iMMFA) model, via the consideration of Dirichlet process mixtures (DPM). It
jointly learns clustering, max-margin classifiers and the discriminative latent space in a united frame-
work to improve the prediction performance. Moreover, both of MMFA and iMMFA are natural to handle
outlier rejection problem, since the observations are described by a single or a mixture of Gaussian
distributions. Additionally, thanks to the conjugate property, the parameters in the two models can be
inferred efficiently via the simple Gibbs sampler. Finally, we implement our models on synthesized and
real-world data, including multimodally distributed datasets and measured radar echo data, to validate

the classification and rejection performance of the proposed models.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Probabilistic latent models have been widely utilized to dis-
cover latent structures and reveal hidden explanatory factors for
complex data in statistics and machine learning [1-6]. These
models, which project an observation into a low dimensional
space, have the ability of exploring and keeping some useful data
information in the new space. Factor analysis (FA) is a typical
example of the probabilistic latent models. It has been used
extensively as a data analytic technique to examine patterns of
interrelationship, data reduction, classification and description of
data [1-3,5,6]. In FA, latent factors can be regarded as a low
dimensional representation of the observations in a latent sub-
space. Nevertheless, FA is an unsupervised model without utili-
zation of any label information and only focuses on the observa-
tions [1-3]. Recently, considering supervising information for
learning predictive latent features has attracted a lot of attentions,
where the inferred discriminant latent features are considered as
input features [7-12]. Yu et al. [7] propose a linear supervised
probabilistic PCA, however, it is developed for real outputs and
only considers the classification problem as the imputation of
missing values without using any classification criterion. Lacoste-
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Julien [8] proposes a discriminative variation on Latent Dirichlet
Allocation (LDA), called DiscLDA, which is trained by maximizing
the conditional likelihood of response variables. The Maximum
Entropy Discrimination Latent Dirichlet Allocation (MedLDA)
model seeks a regularized posterior distribution of the predictive
function in a feasible space [9]. In MedLDA, the predictive function
is defined by a set of expected margin constraints generalized from
the SVM-style margin constraints. Furthermore, by employing the
latent variable representation of SVM (LVSVM) [ 13], Gibbs MedLDA
[10,11] is proposed with an efficient inference algorithm-Gibbs
sampling [14,15]. Those three supervised LDA models focus on the
supervised probabilistic topic models for dimensionality reduction
in collections of text documents or images (represented by bag of
words model) rather than the continuous data. In [12], Zhu et al.
develop the regularized Bayesian inference (RegBayes) principle
and present two concrete examples of RegBayes, infinite latent
support vector machines (iLSVM) and multi-task infinite latent
support vector machines (MT-iLSVM), where max-margin con-
straints are introduced to improve the discriminative power of a
Bayesian model.

For multimodally distributed database in many real-world
problems, simple linear classifier cannot provide a well dis-
criminative boundary. Though kernel method classifiers can han-
dle linearly inseparable data, they need to build the kernel matrix
with all training data, which leads to computational and storage
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burden. Therefore, some approximate realizations of SVM, like
SimpleSVM [16] and the core vector machines (CVM)[17], have
been proposed to reduce complexities caused by kernel matrix. As
an alternative way, the mixture-of-expert (ME) strategy is pro-
posed to discover underlying descriptive patterns and improve
efficiency, which partitions the input data into finite clusters and
then learns a linear classifier within each cluster [18,19]. Moreover,
to deal with the model selection problem, nonparametric Bayesian
technique, especially the DP mixture (DPM) model, has been
introduced into ME models [20-24]. For example, Shahbaba et al.
[21] build a nonlinear model based on a DP mixture of multi-
nomial logit (MNL), which is denoted as dpMNL. In [22], Hannah
et al. propose Dirichlet process mixtures of generalized linear
models (DP-GLM), a new class of methods for nonparametric
regression. Zhu and his colleagues propose infinite SVM (iSVM), a
DP mixture of kernel SVM [23] also with the Gibbs sampler [24].
Nevertheless, those methods work in original space, which is not
practical to handle high dimensional data without feature
extraction procedure.

In this paper, we first develop max-margin factor analysis
(MMFA), which jointly learns the discriminative subspace and
max-margin classifier. The interplay between the likelihood
function of the observation modeled by FA and maximum
margin constraint induced by LVSVM can yield latent representa-
tions that are more discriminative and reasonable for supervised
prediction tasks. Furthermore, to handle multimodally distributed
databases, we develop infinite max-margin factor analysis
(iMMFA) by introducing DPM into MMFA, which divides the
dataset into ‘infinite’ clusters in the learned latent space and learns
a LVSVM classifier on each cluster jointly. Both MMFA and iMMFA
capture the underlying structure of the observations in the sub-
space and employ LVSVM as the classifier with the low-
dimensional latent representations as the input feature. Addi-
tionally, the observations in MMFA and iMMFA are modeled by a
single or a group of Gaussian distributions. Thus, outlier rejection,
which is important in many real recognition tasks, can be imple-
mented in the prediction phase. The parameters of MMFA and
iMMFA have good conjugacy conditioned on augmented variables
and can be effectively inferred via the simple and efficient Gibbs
sampler.

The remainder of this paper is structured as follows. In Section
2 we introduce the latent variable SVM and FA model, and then
present MMFA. Further, we introduce DP and DPM, and then
present Gibbs iMMFA in Section 3. In Section 4, experiments are
conducted on synthetic, benchmark, and measured radar HRRP
dataset to evaluate the effectiveness and efficiency of our models.
Finally, the paper is concluded.

2. Max-margin factor analysis

The goal of the supervised probabilistic latent models is to
learn a discriminative subspace guided by a given classifier and
classification strategy. In classification, SVM, the best known
example, is arguably more discriminative and has achieved a great
success. Considering the conjugacy property in the Bayesian
models, we would like to formulate a joint probabilistic model of
latent models and supervised learning with a fully Bayesian
treatment. However, the hinge loss makes SVM difficult to be
modeled under the traditional Bayesian framework. Fortunately,
Polson et al. [13] reformulate the SVM optimality criterion with
the parameter regularization penalty as a mixture of normal
pseudo-posterior distributions, which allow SVM to be analyzed
with Bayesian treatments. In this case, Bayesian models and SVM
can be jointly learned in a united framework. Based on Polson's

work [13], we develop MMFA in this section. And we review
LVSVM first.

2.1. Latent variable support vector machine (LVSVM)

Given a labeled training dataset {(xn,yn)| XneRPy, e
{—1,4+11N_,, SVM describes a binary linear classification with
the decision function y, =sign(n"X,), where X, =[x,; 1] is aug-
mented feature vector and 1 is the weighted coefficient. If y,, > 0,
X, is classified as a positive sample (+1), else as a negative sample
(—1). SVM is a max-margin method, where the margin is defined
as the smallest distance between the decision boundary and any of
the samples. In order to maximum the margin, SVM solves the
problem

N
min 3N(3+Co Y &,
N n=1
st yMXn=1-E,
£, >0n=1,.,N (1)

where Cy is a positive tuning parameter. The underlying dis-
criminative objective is a linear hinge loss function,
max(1-y,n'X,,0), which seems to make traditional Bayesian
analysis difficult to model.

Conventionally, problem (1) can be solved by convex optimi-
zation algorithm. Unlike the conventional way, Polson et al. [13]
present a latent variable representation of SVM. They present the
pseudo-likelihood contribution from observation y,.¢, (v,IM), as a
location-scale mixture of normal to deal with hinge loss function.
The pseudo-likelihood contribution can be expressed as [13]

¢n(YnIM) = exp{ —2Co max(1-y,N'X,,0)}
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¢, (y,IM) can be regarded as the marginal from a joint dis-
tribution ¢, (y,, 4:IM), which is conjugate to multivariate normal
prior distribution.

In this paper, we employ a Student-t prior, implemented via the
hierarchical construction of normal-gamma distribution on n:

N~N(0,67'I), o~ Ga(ao,bo) 3)

According to (2) and (3), the SVM pseudo-posterior distribution
can be expressed as the marginal distribution of a higher dimen-
sional distribution with the augmented variables A. Then we can
write down the complete data pseudo-posterior distribution as
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Consequently, Gibbs sampling algorithm [14,15] can be imple-
mented to repeatedly sample each random variable from its con-
ditional distribution. The augmented data space allows the SVM
optimality criterion to be expressed as a conditionally Gaussian
linear model that is familiar to most Bayesian statisticians.

2.2. Max-margin factor analysis

Factor analysis, one of the most popular probabilistic latent
models, projects an observation into a low dimensional space that
captures the latent feature of data, which, specifically, assumes
that an observed P-dimensional variable x is generated as a linear
transformation of some lower K-dimensional latent variable s plus
additive Gaussian noise €. The transformation matrix D is the
loading matrix with each column dik=1,--.,K. Then the
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