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a b s t r a c t

Soft subspace clustering algorithms have been successfully used for high dimensional data in recent
years. However, the existing algorithms often utilize only one distance function to evaluate the distance
between data items on each feature, which cannot deal with datasets with complex inner structures. In
this paper, a composite kernel space (CKS) is constructed based on a set of basis kernels and a novel
framework of soft subspace clustering is proposed by integrating distance metric learning in the CKS.
Two soft subspace clustering algorithms, i.e., entropy weighting fuzzy clustering in CKS for kernel space
(CKS-EWFC-K) and feature space (CKS-EWFC-F) are thus developed. In both algorithms, the prototype in
the feature space is mapped into the CKS by multiple simultaneous mappings, one mapping for each
cluster, which is distinct from existing kernel-based clustering algorithms. By evaluating the distance on
each feature in the CKS, both CKS-EWFC-K and CKS-EWFC-F learn the distance function adaptively
during the clustering process. Experimental results have demonstrated that the proposed algorithms in
general outperform classical clustering algorithms and are immune to ineffective kernels and irrelevant
features in soft subspace.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering has a wide range of applications, including statistics,
data mining, and database. It has been extensively studied and many
algorithms have been developed [1–7]. Among the studies, soft sub-
space clustering has emerged as a hot research topic in the fields of
data mining in recent years [8–17,39]. Under the classical framework
of k-means or fuzzy c-means clustering algorithms, data objects in the
entire data space are grouped but assigned with different weights for
different dimensions of the clusters. The assignment is based on the
importance of the features in identifying the corresponding clusters.
For datasets with different clusters correlating to different subsets of
features, soft subspace clustering is a more suitable approach since
different vectors of feature weights are assigned to each cluster.

According to the ways of dataset partitioning, soft subspace
clustering algorithms [8–20] can be divided into two categories,
namely, soft subspace hard clustering and soft subspace fuzzy
clustering. For the former, each data object belongs to only one

cluster [8,11–13], while for the latter, each data object belongs to
every cluster to a certain degree [10,17]. Besides, soft subspace
fuzzy clustering can deal with overlapping cluster boundaries. On
the other hand, according to the way of soft subspace weighting,
soft subspace clustering can also be classified into fuzzy weighting
subspace clustering and entropy weighting subspace clustering
[10]. Typical fuzzy weighting subspace clustering algorithms
include attributes-weighting algorithm (AWA) [8], fuzzy weighting
k-means (FWKM) [12], fuzzy subspace clustering (FSC) [11] and
partition-indexed soft subspace clustering (PI-SSC) [17]. The
algorithms assign a fuzzy weight wα

jh to the hth feature of the jth
cluster and adjust the feature weights for each cluster auto-
matically during the clustering process. Entropy weighting sub-
space clustering algorithms include entropy weighting k-means
(EWKM) [13], clustering objects on subsets of attributes (COSA)
[20] and enhanced soft subspace clustering (ESSC) [10]. The
algorithms utilize entropy to control the feature weights in each
cluster.

Although many soft subspace clustering algorithms have been
developed for different application areas, there are still rooms to
further improve the performance. A major weakness of soft sub-
space clustering is the lack of algorithms that are universal for
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various real world applications. In other words, given a particular
soft subspace clustering algorithm, the clustering results can be
satisfactory for some datasets while inferior for others. This is
because existing soft subspace clustering algorithms utilize only
one fixed distance function to evaluate the relationships between
data items in two patterns during the clustering process. However,
data items in two patterns of different datasets could exhibit dif-
ferent and complex relationships which cannot be described
simply by a distance function. Moreover, as the clustering process
proceeds, the relationships between data items may change from
time to time while the existing soft subspace clustering techniques
cannot adapt to the change by updating the distance computation,
thereby leading to performance degradation.

To improve the performance of soft subspace clustering, it is
necessary to evaluate the relationship between data items adap-
tively and a distance metric learning strategy is thus in demand.
Recent studies have shown that learning the distance function
from the data can improve the performance effectively. Depending
on the availability of the training data, algorithms for distance
metric learning can be divided into supervised and unsupervised
approaches. In supervised distance metric learning algorithms,
labeled data or side information are utilized to learn the distance
function such that data points from the same class are put closely
together whereas those from different classes to moved far apart.
Representative approaches include convex optimization approach
[21], information-theoretic approach [22], smooth optimization
approach [23] and alternating optimization approach [40]. On the
other hand, unsupervised distance metric learning is a more
challenging approach due to the lack of any prior knowledge. In
the absence of constraint or class label information, most unsu-
pervised distance metric learning algorithms are in general
developed to exploit the underlying manifold structure of the data.
Typical unsupervised approaches include adaptive metric learning
algorithm (AML) [29], nonlinear adaptive distance metric learning
algorithm (NAML) [25], adaptive metric learning for self-
organizing incremental neural network (SOINN-AML) [27],
locally linear metric adaptation (LLMA) [24]. However, all these
clustering algorithms are developed based on distance computa-
tion in full space, which is different from the situation in soft
subspace clustering algorithms where distance computation is
performed based on data items along with each feature. Thus, it is
necessary to develop distance metric learning approach so that the
most suitable relationship between data items along with each
feature can be learned in an unsupervised way.

In this paper, a distance metric learning mechanism for soft
subspace clustering is investigated. First, a composite kernel space
(CKS) is constructed by linear combination of a set of basis kernel
mappings. With the mechanism of distance metric learning, the
distance between data items on each feature can be learned
adaptively in this CKS. Accordingly, a novel framework of soft
subspace clustering is proposed by integrating distance metric
learning in the CKS. Especially, two novel soft subspace clustering
algorithms, i.e., entropy weighting fuzzy clustering in CKS for
kernel space (CKS-EWFC-K) and feature space (CKS-EWFC-F) are
proposed, with suffixes K and F in the abbreviations standing for
the kernel space and feature space respectively. In both algo-
rithms, the prototype in the feature space is mapped into the CKS
by a class of mappings simultaneously, one mapping for each
cluster. The mechanism is different from existing kernel-based
clustering algorithms. Based on fuzzy partition of the datasets, the
proposed algorithms simultaneously locate clusters in CKS and
identify the optimal kernel weights for a combination of kernel
sets. The incorporation of soft subspace and the automatic
adjustment of kernel weights in CKS enable adaptive computation
of the distance between data items. Hence, the clustering quality
of CKS-EWFC-K and CKS-EWFC-F can be improved for various

applications. For easy reference and to enhance the readability of
the paper, the major notations used in this paper are summarized
in Table 1.

The rest of the paper is organized as follows. In Section 2,
related work on soft subspace clustering is reviewed. In Section 3,
the composite kernel space is presented, followed by the discus-
sion of the CKS-EWFC-K and CKS-EWFC-F algorithms and their
properties. The experiment results are reported and analyzed in
Section 4. Conclusions are given in Section 5.

2. Related work

Soft subspace clustering has been a hot research topic in recent
years [8–20]. Many algorithms have been developed and the
ultimate goal, generally speaking, is to find the local minimum of
the objective function J below

JðU;W;ZÞ ¼
Xc
j ¼ 1

Xn
i ¼ 1

um
ji

Xs
h ¼ 1

wα
jhd

2ðxih; zjhÞþΗðU;WÞ; ð1Þ

under the constraints
Pc

j ¼ 1 uji ¼ 1 and
Ps

h ¼ 1 wjh ¼ 1. In the

equation, the first term
Pc

j ¼ 1
Pn

i ¼ 1 u
m
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h ¼ 1 w

α
jhd

2ðxih; zjhÞ is
interpreted as the total weighted distance between each data
object xi, i¼1, 2, …, n, and the cluster centers zj, j¼1, 2, …, c; and
the second term Η(U,W) is a penalty term which is often used to
optimize the performance of the algorithm. The term d(xih, zjh) in
Eq. (1) is a dissimilarity measure between xih and zjh, which is
often taken as the Euclidean distance, i.e. d(xih,zjh)¼ ||xih-zjh||, in the
original feature space. Other distance functions have also been
used in some recent studies, e.g. Minkowski distance function [30],
alternative distance function [15], ε-insensitive distance [10] and
the Euclidean distance function in kernel space [16]. In this paper,
we present a new taxonomy for soft subspace clustering based on
the distance function adopted.

2.1. Euclidean distance

The attribute weighting algorithm proposed by Chan et al. is
one of the earliest soft subspace clustering algorithms. It adopts
the Euclidean distance function [8] and the fuzzy weighting
strategy is incorporated into the learning criterion. The objective
function of AWA JAWA is formulated as follows:

JAWAðU;W;ZÞ ¼
Xc
j ¼ 1

Xn
i ¼ 1

uji

Xs
h ¼ 1

wα
jh xih�zjh
� �2 ð2aÞ

Table 1
Notations used in this paper.

Notations Descriptions

c Cluster number
m Fuzziness of membership
n Size of dataset
s Number of features
p Number of mappings or kernels
uik Fuzzy memberships
wih Feature weight
Z Cluster center matrix
W Fuzzy weighting matrix
U Fuzzy partition matrix in fuzzy clustering algorithms, or hard

partition matrix in hard clustering algorithms
V Kernel weights matrix
α Fuzziness of W
η, γ, ε, εu, εw Coefficients for penalty terms
xih The hth feature of data point xi
zjh The hth feature of cluster center vj
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