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ABSTRACT

Linear subspace learning methods such as Fisher's Linear Discriminant Analysis (LDA), Unsupervised
Discriminant Projection (UDP), and Locality Preserving Projections (LPP) have been widely used in face
recognition applications as a tool to capture low dimensional discriminant information. However, when
these methods are applied in the context of face recognition, they often encounter the small-sample-size
problem. In order to overcome this problem, a separate Principal Component Analysis (PCA) step is
usually adopted to reduce the dimensionality of the data. However, such a step may discard dimensions
that contain important discriminative information that can aid classification performance. In this work,
we propose a new idea which we named Multi-class Fukunaga Koontz Discriminant Analysis (FKDA) by
incorporating the Fukunaga Koontz Transform within the optimization for maximizing class separation
criteria in LDA, UDP, and LPP. In contrast to traditional LDA, UDP, and LPP, our approach can work with
very high dimensional data as input, without requiring a separate dimensionality reduction step to make
the scatter matrices full rank. In addition, the FKDA formulation seeks optimal projection direction
vectors that are orthogonal which the existing methods cannot guarantee, and it has the capability of
finding the exact solutions to the “trace ratio” objective in discriminant analysis problems while tradi-
tional methods can only deal with a relaxed and inexact “ratio trace” objective. We have shown using six
face database, in the context of large scale unconstrained face recognition, face recognition with occlu-
sions, and illumination invariant face recognition, under “closed set”, “semi-open set”, and “open set”
recognition scenarios, that our proposed FKDA significantly outperforms traditional linear discriminant
subspace learning methods as well as five other competing algorithms.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

conduct non-linear dimensionality reduction, with the assumption
that the high dimensional data lies on a low dimensional man-

In the past two decades, researchers have been focused on
finding meaningful subspaces such that the low dimensional
representation of high dimensional data can facilitate better clas-
sification performance. For instance, principal component analysis
(PCA) [1] aims to find a subspace that preserves well the second-
order statistics and captures maximal variability of the data, but
does not take into account class separation for the purpose of
classification. Discriminant analysis methods such as Fisher's lin-
ear discriminant analysis (LDA) [2] and unsupervised discriminant
projection (UDP) [3], on the other hand, seek to obtain subspaces
where similarity criteria are enhanced, especially when the
Gaussianity assumption (as in the LDA) does not hold for the
training and testing data. Manifold approaches such as Isomap [4],
locally linear embedding (LLE) [5], and Laplacian eigenmap (LE) [6]
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ifold embedded within the ambient space. Locality preserving
projections (LPP) [7] method is a direct linear approximation of
Laplacian eigenmap and shares many of the data representation
properties of nonlinear techniques such as Isomap, LLE, and LE.
LPP finds linear projective subspaces that optimally preserve
the neighborhood proximity structure of the data. Some recent
advances in manifold-based face recognition can be found in
[8-11].

The aforementioned linear discriminant subspace learning
methods such as LDA, UDP and LPP all suffer from the small-
sample-size problem [12], whenever the number of samples is
smaller than the sample dimensionality. In this case, the sample
scatter matrices can become singular in these methods, resulting
in computational difficulty, due to the inversion of a singular
matrix. To tackle this, a separate PCA step is adopted [2,3,7] to
project images from the original image space into a face-subspace,
where dimensionality is reduced to make certain scatter matrices
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non-singular and invertible. The downside of this is that the
PCA step may discard dimensions that contain important dis-
criminative information that can aid classification performance.

In this work, we propose new idea which we named multi-class
Fukunaga Koontz discriminant analysis (FKDA) by incorporating
the Fukunaga Koontz transform [13] within the optimization for
maximizing class separation criteria in LDA, UDP, and LPP. In
contrast to these traditional methods, our approach can work with
very high dimensional data as input, without requiring a separate
dimensionality reduction step to make the scatter matrices
invertible. Moreover, our proposed FKDA formulation seeks opti-
mal projection direction vectors that are orthogonal while tradi-
tional methods may not guarantee, and it has the capability of
finding the exact solutions to the “trace ratio” objective in dis-
criminant analysis problems while traditional methods can only
deal with a relaxed and inexact “ratio trace” objective. We have
performed face recognition experiments on the FRGC ver
2.0 database and YaleB database where we report significantly
better results using our proposed FKDA method compared to LDA,
UDP, and LPP.

The rest of the paper is organized as follows: Section 3 reviews
the LDA, UDP, and LPP approach. Section 4 details the proposed
FKDA method. Section 5 briefly describes the database to be used
in the experiments as well as the preprocessing scheme. Section 6
reports the experimental results. Finally, we conclude my work in
Section 7.

The major contributions of this work are: (1) we have proposed
an alternative way of maximizing the class separation criteria in
LDA, UDP, and LPP without deriving the generalized Rayleigh
quotient. (2) We show that the optimization in LDA, UDP, and LPP
in the ratio form can be equivalently replaced by the proposed
fixed-sum form. (3) Such fixed-sum form in the proposed FKDA
framework does not require any scatter matrices to be non-
singular since no matrix inversion is required. (4) The optimal
projection direction vectors obtained under FKDA formulation are
orthogonal to each other which will aid the discriminability and
classification performance. (5) The FKDA finds the exact solution to
the “trace ratio” objective in the discriminant analysis problems
while traditional methods in LDA, UDP, and LPP only solves for the
relaxed and inexact “trace ratio” problem in the objective function.
(6) We show that better face recognition performance can be
achieved using the FKDA framework because our approach does
not require a separate dimensionality reduction step using PCA
which may discard important discriminant dimensions as in the
traditional formulation of LDA, UDP, and LPP approaches, also the
orthogonality of the projection vectors and the capability of find-
ing exact solution to the “trace ratio” objective all add merits to
the superiority of the FKDA.

2. Related work

The general problem we address in this paper has already been
considered in the pattern recognition literature.

2.1. Small-sample-size problem

There are some related work on solving the small-sample-size
problem raised in the execution of discriminant analysis. Since
LDA is probably one of the most widely used and best known
discriminant methods, the following related work will be limited
to LDA method. However, similar limitations are also found in UDP
and LPP formulations. To be discussed below are some well known
approaches to solving the small-sample-size problem in LDA.

One of the most common ways to deal with the small-sample-
size problems is to apply an intermediate dimension reduction

step using PCA to reduce the dimension of the original data before
traditional LDA is carried out. The algorithm is known as
PCA+LDA [2,14]. In this two-stage PCA+LDA algorithm, the dis-
criminant stage is preceded by a dimension reduction stage using
PCA. The dimension of the subspace transformed by PCA is chosen
such as the “reduced” total scatter matrix Sy or within-class scatter
matrix Sy in the subspace is nonsingular, so that classical LDA can
be applied. A limitation of this approach is that the optimal value
of the reduced dimension for PCA is difficult to determine.
Moreover, the PCA stage may discard some useful dimensions that
may contain discriminative information.

It has been suggested that the null space of the Sy scatter
matrix is important for discrimination. The claim is that applying
PCA in Fisher's LDA may discard discriminative information since
the null space of Sy, contains the most discriminative information.
Upon this idea, direct LDA (DLDA) [15] method has been proposed,
making use of the nullspace of the Sy,. DLDA derives eigenvectors
after simultaneous diagonalization [12]. Unlike previous approa-
ches, DLDA simultaneously diagonalizes the between-class scatter
matrix Sg first and then diagonalizes Sy which can be expressed as
WTS;W=1I and W'SyW = A. The eigenvectors with very small
(close to zero) eigenvalues in the Sg can be discarded since they
contain no discriminative power, while simultaneously keeping
the eigenvectors with small eigenvalues in the Sy, especially those
in the null-space.

Another way to deal with the singularity of St is to apply reg-
ularization, by adding some constant values to the diagonal ele-
ments of Sr, as Sr+ uly, for some u > 0, where I, is an identity
matrix. It is easy to verify that Sy + ul,; is positive definite, hence
nonsingular. This approach is called regularized LDA (RLDA) [16]. It
is evident that when y — oo, we lose the information on Sr , while
very small values of 4 may not be sufficiently effective. Cross-
validation is commonly applied for estimating the optimal u. But
in practice, it is always not an easy task to determine the optimal y
value because of the ad-hoc property of the parameter, especially
when the training and testing data are not from the exact same
distribution. For more studies on RLDA, readers can refer to
[17,18].

One generalization of regularized LDA is called the penalized
LDA (PLDA) [19]. Instead of regularizing the total scatter matrix,
the PLDA penalizes, or regularize, the within-class scatter matrix
as Sy + 1, for some penalty matrix /. I is symmetric and positive
semidefinite which is more general than a diagonal matrix. The
penalties can produce smoothness in the discriminant functions,
hence bypass the singularity problem of the scatter matrix.

Pseudo-inverse is designed to tackle the matrix singularity
problems by approximating the inversion solution in a least-
squares sense. The pseudo Fisher linear discriminant analysis
(PFLDA) [12,20] is based on the pseudo-inverse of the singular
scatter matrices. The generalization error of PFLDA was studied in
[21], when the size and dimension of the training data vary.
Pseudo-inverses of the scatter matrices were also studied in [18].
Again, this circumvents the singularity problem in LDA formula-
tion, but at the cost of replacing the original objective function
with its approximate form.

By utilizing the generalized singular value decomposition
(GSVD) [22], the LDA/GSVD algorithm [23,24] is developed. The
criterion Jo used in [24] is Jo(W)=tr((S5)*Sk,), where (Sp)*
denotes the pseudo-inverse of the between-class scatter matrix.
LDA/GSVD aims to obtain the optimal projection W that minimizes
Jo(W), subject to the constraint that rank(W " Hp) = g, where q is
the rank of Sg, and Hp will be mentioned in the following section.
The above constraint is enforced to preserve the dimension of the
spaces spanned by the centroids in the original and transformed
spaces. The optimal solution can be reached by applying the GSVD.
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