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a b s t r a c t

In this paper, we constrain faces to points on a manifold within the parameter space of a linear statistical
model. The manifold is the subspace of faces which have maximally likely distinctiveness and different
points correspond to unique identities. We provide a detailed empirical validation for the chosen
manifold. We show how the Log and Exponential maps for a hyperspherical manifold can be used to
replace linear operations such as warping and averaging with operations on this manifold. Finally, we use
the manifold to develop a new method for fitting a statistical face shape model to data, which is both
robust (avoids overfitting) and overcomes model dominance (is not susceptible to local minima close to
the mean face). We provide experimental results for fitting a dense 3D morphable face model to data
using two different objective functions (one underconstrained and one with many local minima). Our
method outperforms generic nonlinear optimisers based on the BFGS Quasi-Newton method and the
Levenberg–Marquardt algorithm when fitting using the Basel Face Model.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Modelling “face space” (the manifold on which valid faces lie) is
a longstanding goal in statistical shape analysis and computer
vision and has been performed in various domains including 2D
[1] and 3D [2] shape, appearance [3] and texture [4]. These
approaches can be viewed as manifold learning where the faces
are assumed to lie on an unknown manifold, the structure of
which is learnt from data. Most commonly, the manifold is
assumed to be a hyperplane (linear subspace) and the principal
axes of the plane are estimated from training data using Principal
Components Analysis (PCA). Applying these models to face ana-
lysis tasks requires a means to fit the model to observed data.
Often this fitting process is underconstrained, prone to converge
on local minima and computationally expensive. For these reasons,
there is strong motivation for developing more constrained face
space models in order to reduce the search space of the fitting
process.

An alternative to manifold learning is to assume that the
structure of the face space manifold is known. For example, the
Grassmannian manifold of subspaces of a vector space has been

used in face recognition [5] and the Kendall manifold of shapes has
been used to model face shape [6].

The model we propose in this paper can be viewed as a hybrid
of these two approaches in the sense that we assume the shape of
the manifold is known (hyper-ellipsoidal) but we use manifold
learning (PCA) to discover its principal axes from data. The moti-
vation for this choice of model is as follows.

Psychological results [7,8] have shown that the parameter
space of a PCA-based model has an interesting perceptually
motivated interpretation: identity relates to direction in parameter
space while distinctiveness is related to vector length (or equiva-
lently distance from the mean). The reason for this is that
increasing the length of a parameter vector simply exaggerates its
differences from the average linearly, in other words its features,
whereas rotating a parameter vector changes the mix of features
present in the face. This is the justification for using angular dif-
ference in face space as a measure of dissimilarity for face recog-
nition [4].

This decomposition also allows a useful probabilistic inter-
pretation. Under the assumption that the original data forms a
Gaussian cloud in a high dimensional space, each model para-
meter is independent and distributed according to a Gaussian
distribution. This means that all faces lie on or near the surface of a
hyperellipsoid in parameter space, with the probability density
over the parameter vector lengths following a chi-square dis-
tribution. In other words, distinctiveness is subject to a statistical
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prior with the distinctiveness of most samples clustered around
the expected length.

In this paper, we use these observations to motivate a repre-
sentation for faces which decomposes face appearance into iden-
tity and distinctiveness subspaces. We focus on statistical models
of 3D face shape. However, any class of objects amenable to linear
statistical modelling using PCA could make the same identity/
distinctiveness decomposition. We use ideas from differential
geometry to develop tools which operate in the identity subspace,
i.e. which retain constant distinctiveness. We provide empirical
justification for constraining samples to have fixed distinctiveness,
determined by the expected vector length.

We propose a new algorithm for fitting a statistical face model
to data. Many such methods have been proposed previously, the
details being dependent on the precise nature of the model and
data. This inevitably involves a nonlinear optimisation over the
model parameters. Our approach is more general and can be
applied to any objective function. It operates via gradient descent
on the manifold of equal distinctiveness. In other words, we solve
for identity and assume distinctiveness takes its expected value.
We show how the method naturally lends itself to a coarse-to-fine
optimisation strategy and how the result avoids local minima or
overfitting without having to select a regularisation weight para-
meter. We show that this offers improved performance over two
generic nonlinear optimisation algorithms.

1.1. Related work

Perhaps the best known statistical face model is the Active
Appearance Model (AAM) [3] which combines a linear model of
2D shape and 2D appearance. Rather than model appearance, the
3D Morphable Model of Blanz and Vetter [4] models the shape and
texture which give rise to appearance via a model of image for-
mation. Xiao et al. [9] have used a 3D model in conjunction with a
2D appearance model to enforce geometric constraints on the 2D
shape generated.

Construction or training of a statistical face model involves a
number of steps: (1) data collection, (2) registration (e.g. trans-
forming the face data to a vector space) and (3) statistical analysis.
When represented in a vector space, face-like samples can be
synthesised by taking convex combinations of training faces.
However, it is the statistical analysis which allows us to study how
the face samples distribute themselves in high dimensional space
and which regions of this space correspond to plausible faces, i.e.
face space.

Although statistical face models have useful applications when
used in a purely generative manner (e.g. for the synthesis of faces),
the most compelling applications necessitate face analysis through
fitting the model to observed data. This data may take many forms,
such as the appearance of a face in one [4,3,9] or more [10,11]
images, a noisy and incomplete 3D scan [12] or the location of a
sparse set of feature points in an image [2].

When the objective function is underconstrained or ill-posed,
the classical approach is to use Tikhonov regularisation (for a
linear objective) or more generally to augment the objective
function with a regularising term using a Lagrange multiplier.
Typically, the regularisation term encourages smaller norms or
equivalently, solutions closer to the mean face. With a suitable
choice of the regularisation weight, this prevents overfitting and
ensures that the resulting face is plausible. However, the optimal
choice of regularisation weight may be different for different data
samples. By choosing a conservative value, fitting results are likely
to be too close to the mean face to capture features of the
input face.

Much prior work uses such regularised optimisation approa-
ches for face model fitting. For example linear regression [3], the

inverse compositional algorithm [13], global optimisation [4],
hybrid objective functions to encourage convexity [14] and alter-
nating least squares for solving a multilinear system [15,16]. All of
these approaches trade off satisfaction of a model-based prior
against quality of fit. To ensure robust performance, these
approaches must favour the prior, resulting in model dominance.

Recently, Brunton et al. [17] proposed a method to fit a statis-
tical shape model to 3D data. They used a hard hyper box con-
straint, whereby each shape parameter was constrained to lie
within 7k standard deviations of the mean. In other words, they
assumed a uniform distribution over the hyper box as their prior.
This has the advantage of being expressed as a linear inequality
constraint on the parameters, enabling it to be incorporated into
standard optimisation methods. Their hyper box is more con-
servative than the hyper-ellipsoid constraint that we propose here,
with the two only intersecting at the corners of the hyper box. This
is done so as to prevent extreme values of a single parameter being
allowed by the constraint. We have not found this to be a problem
in our experimental results and our manifold is motivated directly
by the properties of assumed distribution over the parameters.
Moreover, by assuming a uniform prior they do not discourage
solutions close to the meanwhen the objective is over constrained.

There has been a recent interest in shape modelling on mani-
folds. Berkels et al. [18] show how to perform discrete geodesic
regression on shape manifolds. This allows them to perform
nonlinear regression in shape space according to a specified dis-
crete path energy. For the specific case of the space of thin shells
(including faces), Heeren et al. [19] provide a computational fra-
mework for calculating geodesics, allowing for plausible inter-
polations, averaging, and even shape extrapolation applications. In
an altogether difference approach, Boscaini et al. [20] formulate
shape interpolation and averaging in the space of Laplacians, from
which shapes are subsequently reconstructed. Shapira and Ben-
Chen [21] show how to align two face spaces (each corresponding
to a different identity) by a non-rigid ICP between the corre-
sponding manifold samples. This allows for shape analogies to be
computed, providing a kind of expression transfer.

In this paper, we propose to solve the model fitting problem
within the subspace of maximally likely faces. This requires the
solution of an optimisation problem on a manifold. This problem
has been considered previously in the medical imaging [22], signal
processing [23], computer vision [24], robotics [25] and projective
geometry [26] communities. Generic methods for optimisation on
arbitrary manifolds have also been proposed [27]. In particular, the
recently released Manopt toolbox [28] allows local optimisation on
a number of manifolds through the expression of an objective and
its gradient in the Euclidean embedding space. We focus on the
case of a hyperspherical manifold and develop a hypherspherical
gradient descent algorithm. In contrast to Manopt, our method
operates in a coarse-to-fine manner in order to reduce suscept-
ibility to local minima and exploits the closed nature of the
manifold to reduce line searches to interval searches. We extend
our previous presentation of this work [29] by demonstrating
results on expression interpolation (Section 3.1) and under-
constrained optimisation (Section 5.2), more thorough empirical
evaluation of the manifold assumption and describing the theo-
retical ideas more thoroughly.

1.2. Outline

In Section 2 we begin by describing our statistical model and
manifold. We first introduce tools from differential geometry
which are necessary for developing our methodology and then
provide empirical validation to justify our choice of manifold. In
Section 3 we describe how warps and averages between two or
more faces can be constrained to the manifold and compare the
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