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a b s t r a c t

A fast spectral clustering method is proposed. Eigenvectors used in NCut are studied as the gap-
normalized distances defined in this paper. The out-of-sample extensions of NCut are derived by
extending the gap-normalized distances to new data, which is interestingly found to be perfectly mat-
ched with the Nyström-based eigenfunction approximation. From the view of gap-normalized distance,
the ensemble NCut method is built by assembling distances of small groups to learn the partitions of the
entire dataset. By iteratively calling such assembly, the iterative ensemble NCut method is proposed.
Experiments on real world datasets and the image segmentation tasks show that, compared with the
state-of-the-art, the proposed IENCut method produces improved clustering quality although this
improvement may sometimes come at the expense of increased processing time.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decade, spectral clustering has been successfully
studied in the machine learning and data mining communities. As
the starting point of many spectral clustering algorithms, the
Normalized Cuts (NCut) algorithm of Shi and Malik [1] is widely
used in image segmentation, face recognition [2], document
clustering [3], and unusual activity detection [4]. Whereas many
clustering methods are strongly attached to the convex region in
Euclidean space, NCut is more flexible in terms of handling data
with a wider range of geometries. It often shows superior
empirical performance when compared with competing algo-
rithms such as k-means or EM, which sometimes fall into the local
optimal solutions on non-convex data.

Despite its advantages, NCut is not widely viewed as a competitor
for large-scale clustering problems, an area that is usually dominated
by classical algorithms such as hierarchical clustering and k-means.
This is due to the fact that when handling a dataset with N obser-
vations, NCut needs to compute the eigenvectors of the N � N affi-
nity matrix, an operation with a complexity of OðN3Þ and memory
space of OðN2Þ in general. For a moderately large N, both the time
cost and memory requirement prevent NCut to be practical.

Our focus here is to extend NCut to deal with large-scale appli-
cations in an efficient way. As in many other situations in spectral
clustering, the eigendecomposition on the entire data is the com-
putational bottleneck for NCut. We aim to find an effective scheme
that reduces the data size for decomposition, and an approximation

to the optimal solution is also desired. In this paper, we propose an
ensemble NCut (ENCut) method and its iterative version (IENCut) for
large-scale data. The proposed method is based on a geometric
perspective of NCut and employs a linear combination of embed-
dings from different training sets to pursue the solution of NCut
problem. Our main contributions include the following:

(1) We extend the gap perspective of NCut in [5], and reveal
that elements in eigenvectors used in NCut are naturally the
weighted distances of data to a series of orthogonal planes, after
gap normalization. Based on this view of NCut, the gap-normalized
distance is defined. Furthermore, the out-of-sample extensions
from the gap-normalized distance and from the Nyström eigen-
function approximation are found perfectly matched.

(2) Based on the gap-normalized distance, we propose a fast
version of NCut, the ensemble NCut, which runs NCut on several
small groups of data and assembles the gap-normalized distances.
An iterative implementation of ENCut, called IENCut, is proposed
to efficiently solve ENCut.

(3) In order to meet the cluster-balancing constraint in IENCut,
we use a projection matrix to force the eigenvectors to be ortho-
gonal to the mean of data, as what NCut requires. To handle the
problem of uncertain directions of cutting planes learned from
groups, we use the sign alignment to adjust the signs of eigen-
vectors of each group.

The rest of this paper is organized as follows. Section 2 briefly
outlines the basic Normalized Cuts algorithm. Section 3 discusses
related work in NCut for large-scale tasks. Section 4 describes the
gap-normalized distance from the gap perspective and its out-of-
sample solutions. Section 5 introduces the ensemble NCut and its
iterative version. Experimental results are presented in Section 6,
and conclusions are shown in Section 7.
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2. Normalized cuts

Like other clustering algorithms, NCut tries to partition data into
clusters, so that members within the same cluster are similar to each
other and members in different clusters are dissimilar. Such partition
is based on the eigendecomposition of the N � N normalized affinity
matrix with elements of the pairwise affinities, where N denotes the
number of data. The eigenvectors of the matrix induce the embed-
dings of the data in a low-dimensional space, where data are easy to
partition by a simple clustering method (such as the k-means). More
details about NCut will be discussed later.

Given a set of data points x¼ fxðiÞjxðiÞARd; i¼ 1;2;…;Ng, the
affinity matrix K is defined by Kij ¼ kðxðiÞ; xðjÞÞ, where kðx; yÞ is a
distance (or similarity) measure which is positive definite and, in
many cases, symmetric. A common choice for kðx; yÞ is the Gaussian
kernel, kðxðiÞ; xðjÞÞ ¼ expð� JxðiÞ�xðjÞJ2=σ2Þ, where J � J denotes
the L2 norm. In graph theory, the affinity matrix K defines the weights
on the edges of a fully connected graph in which each node corre-
sponds to a data xðiÞ and Kij the edge between node xðiÞ and xðjÞ.

A binary partition of data, for example, cuts the graph into two
disjoint sets, A and B, with binary label yiAf�1; þ1g. NCut refers
to the cost function cutðA;BÞ ¼P

yi 40
P

yj o0�yiyjKij, defined by
the sum of the pairwise weights that link nodes in different sets.
Denote the degree matrix D¼ diagfd1; d2;…;dNg where di ¼

P
jKij,

the sum of the ith row of K. Let volðAÞ ¼P
iAAdi be the sumweight

of all data in set A. The goal of NCut is to find the optimal labels
fyigNi ¼ 1Af�1; þ1g that minimize the normalized cost function:

NCutðA;BÞ ¼ cutðA;BÞ
volðAÞ þcutðB;AÞ

volðBÞ ð1Þ

However, minimizing (1) by binary labels is NP-complete [1].
To handle this problem, [1] proposes to embed labels yi in real
value domain for an approximate solution. The embedded labels,
yiA ½�1; þ1�, are also known as the embeddings of data.

For multi-way partition, one can refer to the recursive two-way
NCut or the K-way NCut with multiple eigenvectors [1]. In recursive
two-way NCut, the bipartition of data by (1) is recursively called until
the stop criterion, such as the desired NCut cost value, is met. For K-
way NCut, the leading l eigenvectors are used as the embeddings of all
data, i.e., each data is embedded into a l-dimensional space for clus-
tering. We adapt the K-way NCut in our paper for multi-way NCut
partition.

After some manipulations, the problem can be rewritten as

argmin
y

yT ðD�KÞy
yTDy

s:t: yTD1¼ 0 ð2Þ
where 1 is the column vector with all elements equal to unity, l is
the number of clusters and y is the real-valued label vector. To
solve (2), it is equivalent to compute the largest l eigenvectors v of
the system [5]

D�1=2KD�1=2v¼ λv ð3Þ
The embeddings (labels) ENCut ¼ y are given by

ENCut ¼D�1=2v ð4Þ

3. Related works on large-scale clustering

There are several options that can be considered for the
extension of NCut to large-scale data. One option is to replace the
original data with a small number of points, i.e., the representa-
tives, which intend to reveal the data structure as a small-scale
clustering task. The KASP method in [6] runs the k-means on the
raw data and picks up the representatives as the centroids of each

k-means-based clusters. Then it performs spectral clustering on
the obtained representatives and distributes the label of each data
point corresponding to its nearest neighbor in cluster centroids.
Sakai and Imiya [7] proposed another way which is based on the
random projection and sampling method. Chen and Cai [8]
represented the data as the linear combination of representatives
(the landmarks), and replaced the original affinity matrix by the
representation matrix for eigendecomposition. More recently,
Shang et al. proposed a fast affinity propagation (FAP) method.
This method first makes use of the sparse affinity propagation [9]
to select the representative candidates then refines them. Finally,
FAP assigns the labels of data corresponding to their representa-
tives. Yu et al. [10] adopted the self-organizing map (SOM)
approach to select the set of representatives. Then a couple of
matrices, the adjacency matrix A and the attraction matrix M, are
used in Yu's work, where A is related to the Euclidean distance
matrix of representatives and M stands for the similarities of raw
data to the representatives. Instead of the affinity matrix used in
NCut, Yu ran NCut on a new matrix, which is a linear weighted
combination of A and M.

Since finding the optimal binary-labeled NCut has proven to be
NP-hard, several researchers focus on the spectral relaxation
problem. Bie and Cristianini [11] devised an efficient NCut
relaxation to a semi-definite program (SDP). Instead of binary
labels, say y¼ f�1;1g, of data, SDP employs the label matrix Γ,
which is related to the NCut relaxation matrix yyT . With the
constraints of semi-definite and unit diagonal, SDP attempts to
solve the optimal Γ and subsequently generates the label vector y
from Γ. The complexity of SDP is reduced to roughly OðN2:5Þ. SDP
uses the ‘subspace trick’ to take into account the consistency of
similar data. Coleman et al. [12] improves the subspace trick by
correcting the inconsistent data as an optimal solution to the 2-
correlation clustering problem.

Power iteration method is also a popular choice for accelerating
NCut. Starting from a randomly selected vector, this kind of
methods iteratively updates the approximated eigenvector until a
desired approximation accuracy is met. Xu et al. [13] proposed a
fast NCut method with linear constraints. In [13] the power
iteration algorithm is used for updating u, the constraint compo-
nent of eigenvectors. Xu's work also shows that the solution from
their method is the global solution to the constraint eigende-
composition problem. Instead of using eigenvectors individually,
Lin and Cohen [14] proposed to use a linear combination of
eigenvectors when the eigengap of the affinity matrix is large
enough. In Lin's work, a single vector, the weighted sum of
eigenvectors, is used and this vector is shown to be block-wise.

The Nyström method may be the most common approach
pursued in the literature. This approach exploits the low-rank
approximations to the affinity matrix, and builds the eigenvectors
from eigenfunctions learned on a small set of data. Despite several
related applications of the Nyström method in machine learning,
mostly on the sped-up eigendecomposition of the Gram matrix
tasks [15,16], its application to spectral clustering begins with the
out-of-sample work in [17]. Works in [17] introduce the Nyström
method to learn the underlining eigenfunction of a kernel and
approximates the eigenvectors of entire data from a small set of
samples. Zhang and Kwok [18] proposed the weighted Nyström
spectral clustering method (WNSP) for clustering. In WNSP, the
volume-weighted kernel matrix is used for eigendecomposition
and the Nyström is employed for extending the eigenvectors from
landmarks to other data. WNSP uses k-means on input data first to
find the landmarks and takes the size of each cluster as the weight.
It is also found in Zhang's work that using the k-means centers as
the landmarks could depress the upper bound of the approxima-
tion error between the accurate kernel matrix and the landmark-
based approximated kernel matrix.
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