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a b s t r a c t

Estimating the number of people present in an image has many practical applications including visual
surveillance and public resource management. Recently, regression-based methods for people counting
have gained considerable importance, principally due to the capability of these methods to handle
crowded scenes. However, the principal drawback of regression-based methods is to find an optimal set
of features and a model, which is usually dependent on the crowd density. Encouraged by the recent
success of sparse representation, here, we develop a robust and scalable people counting method. Sparse
representation allows us to capture the hidden structure and semantic information in visual data and
leads to faster processing algorithms. In order to reduce the complexity of solving l1�minimization
problem, which resides at the heart of the sparse representation, a dimensionality reduction method
based on random projection is employed. The sparse representation framework provides new insight
that if sparsity in the classification problem is properly harnessed, feature extraction is no longer critical.
So, in addition to several hand-crafted features, we exploit the features obtained from pre-trained deep
Convolutional neural network and show these features perform competitively. Further, to render the
proposed method user friendly, we employ a semi-supervised elastic net to automatically annotate
unlabelled data with only a handful of user-labelled image frames. Our semi-supervised method exploits
temporal continuity in videos. We use extensive evaluations on the crowd analysis benchmark datasets
to demonstrate the effectiveness of our approach as well as its superiority over the state-of-the-art
regression-based people counting methods, in terms of accuracy and time.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Estimation of the number of people in a scene is a topic of
significant interest in areas such as safety and security, resource
management, urban planning and scheduling public transporta-
tion systems. Literature on people counting includes three con-
ceptually different techniques: counting by people detection,
counting by clustering and counting by regression.

In the counting by a detection technique [1,2], a classifier is
trained using the common features of pedestrian training images,
which usually include Haar-wavelets or histogram of oriented
gradients (HOG) [3]. A trained classifier is then applied in a sliding
window fashion across the whole image space to detect pedestrian
candidates. The detection performance can be further improved by
adopting a part-based detection technique or tracking validation
during frames. But, as the crowd becomes larger and denser,

detection and tracking tasks become impractical due to occlusions.
An alternative way is counting by clustering [4,5] which consists of
the steps of identifying and tracking visual features over time. This
technique assumes a crowd to be composed of individual entities,
each of which has a unique yet coherent motion pattern that can
be clustered to estimate the number of people. However, it needs
sophisticated trajectory management and in crowded environ-
ments, coherently moving features usually do not belong to the
same person. The counting by the regression technique [6,7]
counts people by learning a direct mapping from low-level image
features to the number of people by the use of supervised machine
learning algorithms. A popular approach is to extract several
global features with complementary nature from crowd segments
and combine them to form a bank of features and then a
regression function is trained to predict the people count. This
technique avoids segmentation/detection of individuals and esti-
mates the crowd density based on a holistic and collective
description of crowd patterns. Although counting by regression
is feasible for crowded environments and could achieve promising
results, it still suffers from serious weaknesses. In particular, Loy
et al. [8] reveal that the optimal feature set is different in sparse
and crowded scenes. In fact, the number of features carried by one
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pedestrian is heavily affected by camera perspective and crowd
density, also it is observed that different features can be more
important given various crowdedness levels. In addition, their
evaluations show that the actual performance of a regression
model can be quite different from what one may anticipate,
subject to the nature of data, especially when it is applied to
unseen crowd density.

Unlike regression techniques, our proposed method based on
sparse representation, does not need to select either the optimal
feature set or the regression model. The main idea behind sparse
representation is, if a collection of representative samples are
found, we should expect that a typical sample has a very sparse
representation with respect to such a learned basis. In other
words, given sufficient diversity in the training images, the new
test image can be well represented as a sparse linear combination
of the training set. This sparse representation would naturally
encode the semantic information of the image [9]. In order to
reduce the time complexity of finding the sparse representation,
random projection is utilized as our choice of dimensionality
reduction method.

It is commonly believed that the Sparse Representation-based
Classification (SRC) requires a rich set of training images of every
class that can span the variation under testing conditions. To fulfill
this requirement, we use a semi-supervised learning framework to
avoid exhaustive manual image annotation. Extensive experimen-
tal results suggest that our proposed method is fast, accurate and
scalable to large-scale datasets.

The remainder of the paper is organized as follows: the theory
of sparse representation is summarized in Section 2. Section 3
shows how to apply general classification framework to people
counting task. In Section 4 we discuss how we exploit semi-
supervised regression to deal with few labelled training samples
effectively. Experimental setup is explained in Section 5 and
results and discussion are presented in Section 6, followed by
conclusion remarks in Section 7.

2. Sparse representation

Sparse representation (SR) has proven to be an extremely power-
ful tool for acquiring, representing, and compressing high-
dimensional signals. This success is mainly due to the fact that
important classes of signals such as audio and images have naturally
sparse representations with respect to fixed bases e.g. Fourier and
Wavelet. Moreover, in recent years, efficient and fast algorithms have
been proposed for computing such representations [9]. The problem
solved by sparse representation is to search for the most compact
representation of a signal (image) in terms of a linear combination of
relatively few base elements in a basis or over-complete dictionary. If
the optimal representation is sufficiently sparse, it can be efficiently
computed by greedy methods or convex optimization. Typically, the
sparse representation technique is cast into an l1�minimization
problem, which is equivalent to the l0�minimization under some
conditions. This l0� l1 equivalence has provided computational
convenience as evidenced by Compressed Sensing (CS) [10].

In the recent years, variations and extensions of l1�minimization
have been applied to many computer vision tasks, including face
recognition [11], background modelling [12] and image classification
[13]. In almost all of these applications, using sparsity as a prior leads
to the state-of-the-art results [9]. The ability of sparse representation
to uncover semantic information derives in part from a simple but
important property of the data: although the images (or their
features) are naturally very high dimensional, in many applications
images belonging to the same class exhibit degenerate structure.
That is, they lie on or near low-dimensional subspaces or submani-
folds [9]. So, if a collection of representative samples are found, we

should expect that a typical sample has a very sparse representation
with respect to such a (possibly learned) basis. Such a sparse
representation, if computed correctly, could naturally encode the
semantic information of the image [9]. SRC seeks a sparse represen-
tation of the query image in terms of the over-complete dictionary
and then performs the recognition by checking which class yields the
least representation error. SRC can be considered as a generalization
of Nearest Neighbor (NN) and Nearest Feature Subspace (NFS).
Generally speaking, Nearest Feature based Classifiers (NFCs) aim to
find a representation of the query image, and classify it to the best
representor. According to the mechanism of representing the query
image, NFCs include Nearest Neighbor, Nearest Feature Line (NFL),
Nearest Feature Plane (NFP) and Nearest Feature Subspace. More
specifically, NN is the simplest one with no parameters, which
classifies the query image to its nearest neighbor. NN, NFL and NFP
all use a subset of the training samples with the same label to
represent the query image, while NFS represents the query image by
all the training samples of the same class. In general, the larger
samples lead to better stability of a method. The most generalized
classifier is SRC, which considers all possible supports (within each
class or across multiple classes) and adaptively chooses the minimal
number of training samples needed to represent each test sample. In
the next section, we show how this sparse representation can be
used in people counting application.

3. People counting based on sparse representation and
random projection

3.1. People counting as sparse representation

Suppose that we have a set of labelled (annotated) training
images from a pedestrian dataset where the number of people
present in each image is given. We assume these labelled training
images fxi; lig are from C different classes. Here, class (label) li is
equal to the count, i.e. number of people in the image xiARm,
where xi is the vector representation of the image, which could be
its raw pixels or features computed from the raw pixels. Given
sufficient training samples from the ith class, any new test sample
xtestARm from the same class, will approximately lie in the linear
span of the training samples associated with class i.

xtest �Σfjj lj ¼ igxjαj ¼ Xiαi ð1Þ

where XiARm�ni concatenates all of the images of class i. Since the
class label of the test image is initially unknown, we would form a
linear representation similar to Eq. (1), now in terms of all training
samples. We define a new matrix (dictionary) Ψ ARm�n for the
entire training set as the concatenation of all n¼Σ ini training
samples of all C classes:

xtest ¼ ½X1;X2;…;XC �α¼ΨαARm ð2Þ
where

α¼ ½…;0T ;αT
i ;0

T ;…�T ARn ð3Þ
α is a coefficient vector whose entries are zero except those
associated with the ith class. We notice that α is a highly sparse
vector and on average, only a fraction of 1=C coefficients are
nonzero and the dominant nonzero coefficients in the sparse
representation α reveal the true class of test image. Indeed, in
the test phase, we wish to represent a new unlabelled image in a
Ψ-dependent space in which the image has a sparse representa-
tion. In general, this vector is the sparsest solution to the system of
equations xtest ¼Ψα which is found by solving the following
optimization problem:

αn ¼ argmin‖α‖0 s:t: Ψα¼ xtest ð4Þ
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