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a b s t r a c t

To address the visual processing problem with corrupted data, in this paper, we propose a non-convex
formulation to recover the authentic structure from the corrupted data. Typically, the specific structure is
assumed to be low rank, which holds for a wide range of data, such as images and videos. Meanwhile, the
corruption is assumed to be sparse. In the literature, such a problem is known as Robust Principal
Component Analysis (RPCA), which usually recovers the low rank structure by approximating the rank
function with a nuclear norm and penalizing the error by an ℓ1-norm. Although RPCA is a convex
formulation and can be solved effectively, the introduced norms are not tight approximations, which may
cause the solution to deviate from the authentic one. Therefore, we consider here a non-convex relaxation,
consisting of a Schatten-p norm and an ℓq-norm that promote low rank and sparsity respectively. We
derive a proximal iteratively reweighted algorithm (PIRA) to solve the problem. Our algorithm is based on
an alternating direction method of multipliers, where in each iteration we linearize the underlying
objective function that allows us to have a closed form solution. We demonstrate that solutions produced
by the linearized approximation always converge and have a tighter approximation than the convex
counterpart. Experiments on benchmarks show encouraging results of our approach.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The popularity of webcams and mobile phone cameras has
generated a large amount of visual data. However, visual data are
easily corrupted by artifacts arising from imaging devices or natural
factors such as illumination. The human vision system could
recognize the corruption with accumulated information and knowl-
edge. However, it will result in irrelevant or noisy information in the
computer vision community. Thus, a bunch of methods have been
proposed to obtain authentic data for visual denoising tasks. Visual
data denoising aims at reducing the noise from the observed visual
documents [1–5]. Specifically, some approaches focus on statistical
image modeling for the purpose of optimal signal representation
and transmission, such as the Gaussian Scale Mixture (GSM) model,
the variance-adaptive model or Bayesian estimation [6,5]. Portilla
et al. presented a denoising method based on a local Gaussian scale
mixture model in an overcomplete oriented pyramid representation
[7]. The approaches mentioned above are based on the initial
features of the visual data. Generally, better features will enhance
the performance of representation. For instance, Shao et al. gener-
ated domain-adaptive global feature descriptors to obtain better

performance in image classification [8]. Zhu et al. utilized weakly
labeled data from other domains as the feature space for the visual
categorization problem [9]. Based on a comprehensive feature
space, some effective and promising denoising approaches are
proposed by exploiting sparse and redundant representations over
a trained dictionary [10]. Elad et al. proposed the K-SVD algorithm
[11]. It was the first time that sparse modeling of image patches has
been successfully applied in image denoising. The extension of K-
SVD is proposed. Yan et al. exploited the sparsity within representa-
tion in the wavelet domain to handle high-level noises [12]. One
reason for the success of the algorithm is the statistical properties of
noise. It is natural to assume that the noise is sparse. Besides, the
visual data such as images are probably of low rank structure [13].
For example, for a facial image taken under certain illumination
conditions, the low-rank component captures the face, and the
sparse component captures the light on the face [14]. Thus, the idea
of turning the problem into a low rank matrix and a sparse matrix
recovery problem has drawn considerable attention. This is the
focus of our work. In the following, we first describe the problem.

1.1. The problem description

Suppose X is an observed data matrix in Rm�n, where m is used
to denote the ambient dimension of a sample and n is the number
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of samples. The problem can be formulated as

min
L;S

rankðLÞþλ‖S‖0 s:t: X ¼ LþS; ð1Þ

where LARm�n has a low rank structure that is assumed to be the
authentic structure of the observed data and SARm�n is assumed
to be the sparse representation of the noise. Rank(L) is the rank of
the matrix L, ‖S‖0 is the ℓ0-normwhich counts the number of non-
zero entries in S, and λ is a parameter balancing the two
components. The goal of the above optimization problem (1) is
called Robust Principal Component Analysis (RPCA), aiming to
recover the low-rank component L and sparse component S, with
the constraint of X ¼ LþS.

1.2. The reformulation and solutions

It is challenging to solve problem (1), because rank(L) and ‖S‖0
are both discontinuous and non-convex. In fact, it is NP-hard. A
common strategy [15] is to relax the rank function to the convex
nuclear norm ‖L‖n ¼

Pminðm;nÞ
i ¼ 1 σiðLÞ, where σi denotes the ith

singular value of L, and relax the ℓ0-norm to the ℓ1-norm ‖S‖1 ¼P
ij jSij j , where jSij j is the magnitude of the ði; jÞ th element in

S. Problem (1) can then be reformulated as

min
L;S

‖L‖nþλ‖S‖1 s:t: X ¼ LþS: ð2Þ

Candès et al. theoretically proved that if L and S satisfy certain
assumptions, they can be recovered exactly via solving a convex
program called Principal Component Pursuit with λ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfm;ngp

[15]. Unlike the formulation defined in (1), RPCA
in (2) is convex, and the optimal solution is tractable. An efficient
solver for (2) is the Alternating Direction Method (ADM) [16]
which guarantees to obtain the optimal solution. Another well-
known first-order algorithm is the Accelerated Proximal Gradient
(APG), which solves an unconstrained Stable Principal Component
Pursuit (SPCP) problem [17] as follows:

min
L;S

λ1‖L‖nþλ2‖S‖1þ
1
2
‖LþS�X‖2F ; ð3Þ

where λ140 and λ240 are balancing parameters. APG is a fast
method with a convergence rate Oð1=T2Þ, where T is the number of
iterations.

1.3. Related works

As the RPCA model is capable of recovering the low rank
component from grossly corrupted data and theoretical conditions
to ensure the perfect recovery have been analyzed in depth, RPCA
and its extensions have been applied to many applications,
including background modeling [15], image alignment [18] and
subspace segmentation [19]. Specifically, Hui et al. presented a
patch-based algorithm using low-rank matrix recovery [20]. Wang
et al. studied the problem of aligning correlated images by
decomposing the matrix of corrupted images as the sum of a
sparse matrix of errors and a low-rank matrix of recovered aligned
images [21]. Hu et al. proposed a truncated nuclear norm regular-
ization for estimating missing values from corrupted images [13].

There are several works aimed at improving the low-rank and
sparse matrix recovery. Mu et al. [22] proposed an Accelerated
RPCA using random projection. Zhou and Tao [23] developed a fast
solver for low-rank and sparse matrix recovery with hard con-
straints on both L and S. To alleviate the challenges raised by
coherent data, most recently, Liu et al. recovered the coherent data
by Low-Rank Representation (LRR) [24,29]. Aybat et al. developed
a fast first-order algorithm to solve the SPCP problem [25]. Fazel
suggested to reformulating the rank optimization problem as a
Semi-Definite Programming (SDP) problem [26]. An accelerated

proximal gradient optimization technique was applied to solve the
nuclear norm regularized least squares [27,28].

However, existing algorithms may lead to solutions that deviate
from the original problem. Most previous works use the convex
nuclear norm as a surrogate of the rank function and the ℓ1-norm
as a surrogate of the ℓ0-norm, and then instead solve the new
problem. But the nuclear norm is the sum of the singular values,
while the rank function is the number of the non-zero singular
values in which each singular value contributes equally. There are
similar differences between the ℓ0-norm and the ℓ1-norm when
performing a theoretical analysis [30]. Hence, the solution to the
relaxed problem may be far from the original one. Some research-
ers instead consider non-convex surrogate functions.

The smoothed Schatten-p norm is a popular non-convex
surrogate of the rank function defined as [31,32]

ℓpðXÞ ¼ TrðXTXþϵIÞp=2

¼
Xn
i ¼ 1

ðσ2
i ðXÞþϵÞp=2 ð4Þ

where I is the identity matrix with the same size as X, and ℓpðXÞ is
differentiable for p40 and nonconvex for po1. Mohan and Fazel
used the Schatten-p norm to replace the rank function and
considered the problem [31]:

min ℓpðXÞ
s:t:AðXÞ ¼ b; ð5Þ

where A : Rm�n⟶Rp is a linear map, and bARp denotes the
measurements. They also proposed the Iterative Reweighted Least
Squares (IRLS) algorithm for rank minimization. Under certain
conditions, IRLS-1 converges to the global minimum of the
smoothed nuclear norm and IRLS-p converges to a stationary point
of the corresponding non-convex yet smooth approximation to the
rank function. Nie et al. [33] proposed the extended Schatten-p
norm as an efficient surrogate of the rank function defined as

ℓp ¼
Xminðm;nÞ

i ¼ 1

σp
i

 !1=p

¼ TrðXTXÞp=2
� �1=p

: ð6Þ

They derived an efficient algorithm to solve the above problem.
For the ℓ0-norm, many non-convex surrogate functions have

been proposed, e.g., ℓq-norm with 0oqo1 [34], and Smoothly
Clipped Absolute Deviation (SCAD) [35]. Nie et al. [32] used the
Alternate Direction Method (ADM) to solve a similar problem for
the non-convex matrix completion problem. Candés et al. [36]
proposed an algorithm to solve the reweighted ℓ1 minimization
problem, which could better recover the ℓ0-norm. The condition of
sparse vector recovery has been given in [34].

The major drawback to the above approaches is that previous
iteratively reweighted algorithms can only approximate either the
low-rank component or the sparse one with a non-convex surrogate
[37,38]. One important reason for this is that it is difficult to solve a
problem whose objective function contains two or more nonsmooth
terms. Thus, in this paper, we simultaneously approximate the low
rank and sparse functions with non-convex surrogates.

1.4. Introducing our approach

In this paper, we propose a new formulation with the Schatten-
p norm and ℓq-norm regularized Principal Component Pursuit (p,
q-PCP) ð0op; qo1Þ for recovering the low-rank and sparse
matrices. We also provide an algorithm to solve such a non-
convex problem with two non-smooth components. Empirically,
our proposed Proximal Iteratively Reweighted Algorithm (PIRA)
can solve p,q-PCP effectively without loss of efficiency. In each
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