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a b s t r a c t

Hashing algorithm has been widely used for efficient approximate nearest neighbor (ANN) search. Learning
optimal hashing functions has been given focus and it is still a challenge. This paper aims to effectively and
efficiently generate relative similarity preserving binary codes. Most existing hashing methods try to preserve
the locality similarity by preserving direct distance similarity, while ignoring the relative similarity which
advantages in ANN search. In this paper, this issue is solved by proposing the relative error which emphasizes
that the ordinal relations in Hamming space and Euclidean space should be consistent with each other. We
learn hashing projection functions via two steps. The first step adopts the lookup-based mechanism to find the
optimal binary codes of training data, which can preserve the relative similarity and simultaneously adapt to
data distribution. The binary codes in the first step are considered as supervision information in the second
step. The objective of the second step is to learn hashing projection functions which can efficiently regenerate
the binary codes in the first step. Aim to be in accordance with the property of data distribution, the hyper
internal tangent planes of two specified spheres are chosen as hashing projection functions. Assisted by these
projection functions, the time complexity of encoding process is greatly reduced. Experimental results on four
public data sets demonstrate that our method outperforms many other state-of-the-art methods.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The widespread of mobile computing applications and increas-
ing amount of image data have rendered floating-point feature
descriptors [1,2] with high dimensions inappropriate choices for
fast image retrieval. Many novel promising methods, such as
sparse coding [3–6] and binary feature learning [7–16] have been
proposed to address this challenge.

Sparse coding represents an image as a sparse linear combina-
tion of items from an over-complete dictionary. The performance of
sparse coding is significantly affected by the quality of the dic-
tionary, and the issue of learning the optimal dictionary has been
given focus on. In [3], a unified objective function is formed by
combining the “discriminative sparse-code error” with other errors,
and a single over-complete dictionary is learned by solving the
objective function using the K-SVD algorithm. The graph topology
selection problem is adopted in [4] to guarantee the similarity of
sparse codes of the feature points belonging to the same class and
therefore improve the performance of the dictionary. Inspired by
the human visional system, Zhu and Shao [5] introduce a visual
categorization framework that utilizes weakly labeled data from

other domains as source data to span the intra-class diversity of the
original learning system.

Binary feature results in great efficiency gains in storage and
facilitate image retrieval using simple data structures and algorithms.
Given these outstanding performances, the problem of learning
binary features has become a research focus and the methods can
be roughly classified into two categories as discussed below.

The first category [7,11,8–10,17] generates binary feature as a
concatenation of simple intensity comparison from a raw image
patch, which results in an extremely short computation time.
Calonder et al. [7] generate binary features using the relative
intensity of point pairs and provide five pre-determined spatial
arrangements, while ignoring the problem of rotation invariant.
The issue of rotation invariant is considered in [8] and the vector
from the center of the corner to the centroid is utilized as the main
orientation. An exhaustive set of comparisons of close locations is
adopted in [10]. Alahi et al. [9] choose the point pair with the highest
bit variance. These methods [7–10] generate binary descriptors on
the basis of pixel intensity. Trzcinski et al. [11] learn binary descrip-
tors according to the gradient orientation of pixels and adopt an
Adaboost-like mechanism to improve the performance. Shao et al.
[18] propose to automatically generate domain-adaptive global
feature descriptors with multi-objective genetic programming which
constitute a suitable mechanism for different image domains.

The second category, hashing method, maps high-dimensional
descriptors [1,2] into compact binary codes. The simple and classical
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method, locality sensitive hashing (LSH) [19], randomly generates
hashing projection functions and maps data into binary codes
according to mapping results. Given that random hashing functions
are data independent, the performance of LSH does not improve
obviously as the number of binary bits increases. Torralba et al. [13]
introduce binary codes to the vision community and achieve effective
results. In [20], the binary codes are generated on the basis of
boosting restricted Boltzmann machines. Spectral hashing (SH) [14]
learns binary codes by partitioning the spectral graph. However, SH
highly demands that the data distribution is uniform which is
unrealistic for real data [21]. Gong and Lazebnik [21] rotate the
principal component analysis (PCA)-projected data and map the data
into the same binary codes as their nearest vertex of a hyper binary
cube. Raginsky and Lazebnik [22] find binary codes based on the
random feature mapping for shift-invariant kernels.

Hashingmethod aims to approximate Euclidean distance by Hamming
distance. This paper achieves this aim with the help of the relative error,
which demands that the relative relationship between the distances of any
two data pairs in Hamming space and Euclidean space should be
consistent with each other. By satisfying this requirement, this study
preserves the relative similarity investigated in [23–27]. Norouzi and Blei
[23] employ a hinge-like loss function to punish similar (or dissimilar)
points when their hamming distances are larger (or smaller) than the
Hamming threshold. Triplet loss hashing [25] uses the relative similarity
defined over triplets of items to formulate the hashing problem. Wang
et al. [26] also employ the triplets of items like in [25] to solve the objective
of the listwise loss.Wang et al. [24] learn hashing functions bymaximizing
the alignment between the similarity orders in Euclidean space and those
in Hamming space. The topology is employed in [27] to preserve the
neighborhood relationships and the neighbor ranking jointly, and the
learning stage is formulated as a generalized eigen decomposition problem
with closed form solutions which is distinct from prior works. These
methods [23,25,26] focus on the relative relationships among triplets of
items. Our method determines binary codes through the relative relation-
ships among all the items in the dataset. Unrealistic bucket balance
restriction is employed to fix the category problem in [24]. By contrast,
our method solves the category problem using the distribution adaptive
mechanism, which has advantage in dealing with real skewed data.

As discussed in [28], existing hashing methods are roughly
classified into Hamming-based methods [19,29,22], lookup-based
methods [28,30,31] and others [14,32,33]. Hamming-based methods
use hyper planes or kernelized hyper planes to quantize space into
cells and map data points into binary codes according to the
projection signs. Lookup-based methods usually employ a clustering
method to divide data into groups and map the data into the same
binary codes as their nearest center. Lookup-based methods have
superior performance in adapting to data distribution. However, the
encoding time complexity of lookup-based methods is higher than
that of Hamming-based methods. Mapping unseen data into m-bit
binary codes, lookup-based methods need to compute the distances
between the unseen data and 2m centers, with a time complexity of
Oð2mÞ. By contrast, Hamming-based methods only compute m
projection results with a time complexity of only O(m).

Attracted by the efficient encoding mechanism of Hamming-based
methods, we also try to adopt the projection mechanism to map
unseen data into binary codes. Different from LSH [19] which
randomly generates its hashing projection functions, in our method,
we demand the projection planes should be distribution adaptive as
lookup-based methods. In order to achieve this aim, we propose an
effective mechanism inspired by two-step hashing algorithms [34–
37]. We learn the binary codes of the training samples in the first step
and generate hashing functions under the supervision of the binary
codes obtained in the first step. The first step in [34] employs spectral
hashing [14] to find the optimal binary codes of training documents,
and then regard linear support vector machines (SVMs) as hashing
projection functions. Unseen data are encoded by computing projec-
tion results with classifier planes and the time complexity of the
encoding procedure is acceptable. Lin et al. propose a two-step idea in
[35] and further exploit this idea in [36]. In [36], a graph cut based
block search method is employed to learn binary codes in the first
step, and then boosted decision trees are trained to re-compute these
binary codes. Sparse hashing [37] generates the coefficients of the
sparse items in the first step, and the second step maps the positive
ones into “1” and the zero coefficients into “0”. The spectral hashing
mechanism in [34] demands unrealistic data distribution. To get ride
of such requirement, our first step adopts the lookup-based mechan-
ism to compute the binary codes, which makes our binary codes
adaptive to data distribution. Our second step considers some
specified tangent planes as the projection planes, which avoids
computing the complex classification problem in [34,36].

The framework of our method is shown in Fig. 1. In the first step,
the relative similarity preserving binary codes are acquired, and we
consider these binary codes as supervision information for learning
hashing mapping functions in the second step. The first step generates
the optimal binary codes using the expectation maximization (EM)
algorithm with iterative mechanism, and the objective function is
formulated by combining the relative error with the quantization
error. The relative error emphasizes preserving relative similarity
which benefits the absolute distance preserving methods in approx-
imate nearest neighbor search [24], and the quantization error makes
the binary codes adaptive to data distribution. In the second step, we
aim to learn hashing projection functions to efficiently regenerate the
binary codes in the first step. According to the data with the same
binary labels distribute in the same hyper sphere [38], we use the
internal tangent planes of two specified spheres as hashing projection
functions. Assisted by these hashing projection functions, we can
efficiently and effectively calculate the binary codes of the unseen data.

Our main contributions are as follows:
1. A novel hybrid model including two steps is proposed to combine

the advantages of lookup-based methods and Hamming-based meth-
ods. The first step adopts the lookup-based mechanism to guarantee
our hashing functions are adaptive to data distribution, and the second
step learns hashing projection functions to greatly reduce the time
complexity of the encoding procedure.

2. In the first step, the relative error which aims to preserve relative
similarity is proposed to boost the performance of our method. The
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Fig. 1. The framework of our algorithm.
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