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a b s t r a c t

The large-scale images and videos are one kind of the main source of big data. Dynamic texture (DT) is
essential for understanding the video sequences with spatio-temporal similarities. This paper presents a
powerful tool called dynamic fractal analysis to DT description and classification, which integrates rich
description of DT with strong robustness to environmental changes. The proposed dynamic fractal
spectrum (DFS) for DT sequences is composed of two components. The first one is a volumetric dynamic
fractal spectrum component (V-DFS) that captures the stochastic self-similarities of DT sequences by
treating them as 3D volumes; the second one is a multi-slice dynamic fractal spectrum component
(S-DFS) that encodes fractal structures of repetitive DT patterns on 2D slices along different views of the
3D volume. To fully exploit various types of dynamic patterns in DT, five measurements of DT pixels are
collected for the analysis on DT sequences from different perspectives. We evaluated our method on four
publicly available benchmark datasets. All the experimental results have demonstrated the excellent
performance of our method in comparison with state-of-the-art approaches.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The explosive growth in the amount of data makes big data
processing and analytics one of the hottest research topics.
Roughly speaking, big data analytics aims at examining a large
amount of data from various sources to uncover hidden patterns,
unknown correlations as well as other useful information. One of
the most-visible sources of big data is video, which is being
generated pervasively by billions of sensors embedded in various
types of devices like surveillance cameras and mobile phones. For
analyzing the underlying patterns captured by videos, a funda-
mental issue is the feature extraction and description of dynamic
patterns which are often in the form of dynamic texture.

Dynamic textures (DTs) are often regarded as video sequences of
moving scenes that possess certain stationary properties in both
space domain and time domain [1,2]. Such video sequences are
ubiquitous in real world, like video clips of boiling water, rivers, sea
waves, fountains, clouds, smoke, fire, swarm of birds, traffic flow,
pedestrians in crowds, whirligig, facial expressions, etc. There are
many applications concerning DT, such as video compression, video
quality assessment, surveillance, detection of the onset of emergen-
cies, foreground/background separation, and human–computer inter-
action; see e.g. [3–6]. In recent years, the related topics of DT in
computer vision community have ranged from DT modeling and
synthesis to recognition and classification. In this paper, we focus on
the development of effective DT description and classification
techniques, which can be integrated to many recognition systems
that involve the characterization of dynamics, e.g. vision sensor based
fire detection, DT segmentation based dynamic scene retrieval, real-
time facial expression analysis, biometrics, etc.

Compared to static textures, dynamic textures vary not only on
the spatial distribution of texture elements, but also on the
organization and dynamics over time. One main challenge in the
study of DT classification is how to reliably capture the motion
behaviors of texture elements, i.e. the properties of dynamics of
texture elements over time. Many existing approaches model the
dynamics either by treating videos as samples of stochastic
dynamical systems or by directly measuring the motion field of
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videos, which are suitable for dynamic textures with regular
motions. However, the effectiveness of existing approaches is not
satisfactory for dynamic textures with complex motions driven by
non-linear stochastic dynamic systems with certain chaos, e.g.
turbulent water and bursting fire. This inspired us to develop an
effective DT descriptor for classifying DT sequences with complex
dynamic behaviors.

1.1. Related work

There are many DT classification approaches, which could be
roughly categorized as either generative or discriminative meth-
ods. The generative methods attempt to quantitatively model the
underlying physical dynamic system that generates DT sequences,
and classify DT sequences based on the system parameters of the
corresponding physical model. The main difference of these
methods lies in the models they build up, e.g. the spatio-
temporal autoregressive model [7] and its multi-scale version
[8], the linear dynamical systems [9,10], the kernel-based model
[11], and the phase-based model [12]. The main drawback of the
generative methods is the inflexibility to describe the DT
sequences generated by nonlinear physical systems with complex
motion irregularities.

In contrast to the generative methods, the discriminative
methods are able to describe DT effectively without explicitly
modeling the underlying dynamic system. The basic idea of the
discriminative methods is to characterize the distribution of local
DT patterns. To efficiently extract local DT patterns, many methods
have been proposed, e.g. the spatio-temporal filtering for specific
motion patterns [13,14], the spatiotemporal extensions of local
binary pattern (LBP) encoding [6], the wavelet pattern extraction
[5,15], the optical flow based pattern estimation [1,16,17], the
space–time oriented pattern analysis [18–20], etc. In practice, the
discriminative methods exhibit better performance than the gen-
erative methods in DT classification and show advantages in the
robustness to environmental changes and viewpoint changes.
However, the merits of existing discriminative methods are quite
limited in the case of DTs with complex motions, as they are not
capable of reliably capturing inherent stochastic stationary proper-
ties of such video sequences.

1.2. Motivation and contribution

Reliable characterization on DT motion behaviors is crucial to the
development of an effective DT descriptor. We notice that although
the motion patterns of many DT sequences could be highly irregular,
they are quite consistent when viewed from different spatial and
temporal scales. In other words, similar mechanisms are operating at
various spatial and temporal scales in the underlying physical
dynamics. Such multi-scale self-similarities are referred as to power
law or fractal structure [21]. In fact, the existence of fractal structures
in a large spectrum of dynamic nature images has been observed by
many researchers, e.g., the amplitude of temporal frequency spectra
of many video sequences, including camera movements, weather
and biological movements by one or more humans, indeed fits
power-law models [22,23,21,24,25].

In this paper, motivated by the existence of stochastic self-
similarities in a wide range of DTs, we propose to model DTs by
using non-linear stochastic dynamic systems with certain inher-
ent multi-scale self-similarities, i.e., dynamic textures are likely
to be generated by some mechanism with similar stochastic
behaviors operating at various spatial and temporal scales. A
novel method called dynamic fractal analysis is proposed for DT
description, which measures such self-similarities of the under-
lying system based on fractal geometry. The proposed method
can be viewed as a discriminative method with generative

motivation, as we assume that DT sequences are generated by
some dynamic systems with self-similarities. The resulting DFS
(dynamic fractal spectrum) descriptor allows us to bypass the
quantitative estimation of the underlying physical model, which
is challenging in practice. Meanwhile, the DFS descriptor has the
merits of both categories of methods: the discriminative power
of generative methods for modeling stochastic behaviors of DT
and the robustness of discriminative methods to environmental
changes.

A preliminary conference version of this work appeared in [26].
The main extensions of this paper include the development of an
additional spatio-temporal measure of DT pixels that brings extra
discriminability, the evaluation on an additional test dataset, and
more detailed analysis on the proposed method. It is noted that
fractal analysis has been exploited in recent literature for DT
recognition; see e.g. [14,15]. These methods mainly focus on static
texture classification and are applied to DT classification by either
simply averaging the original features on each DT frame (e.g. [15]),
or directly extending the descriptors to 3D case (e.g. [14]).
Compared with these fractal-based methods, our method captures
both the global self-similar behaviors on an entire DT sequence
and the statistical self-similarities of the repetitive patterns on
each DT slice. Thus, our method enjoys higher discriminative
power in DT classification.

2. Basics on fractal analysis

Before presenting the details of the proposed method, we
first briefly introduce the theory and numerical implementa-
tion of fractal analysis. Interested readers are referred to [27–
29] for more details. Fractal analysis is built on the concept of
fractal dimension which was first proposed by Mandelbrot [28]
as a description for power laws. The power laws exist in
numerous natural phenomena, e.g., the amplitude of temporal
frequency spectra A(f) of many video sequences fits 1=f β power-
law models [22,23,21]

Aðf Þp f �β ; ð1Þ
where f denotes the frequency.

The fractal dimension is about self-similarity defined as the
power law which the measurements of objects obey at various
scales. One widely used fractal dimension in Geophysics and
Physics is the so-called box-counting fractal dimension. Let the n-
dimensional Euclidean space Rn be covered by a mesh of n-dim
hypercubes with diameter 1

m. Given a point set E�Rn, the box-
counting fractal dimension βðEÞ of E is defined as the following
[27]:

βðEÞ ¼ lim
m-1

log# E;
1
m

� �

� log
1
m

; ð2Þ

where #ðE; 1mÞ is the number of mesh hypercubes that intersect E
for m¼ 1;2;…. In numerical implementation, it can be done by
using least squares fitting in the log–log coordinate system with a
finite sequence of ordered integers.

For the physical phenomena with mixtures of multiple fractal
structures, the so-called multi-fractal analysis extends the
fractal dimension to describe and distinguish more complex
self-similarity behavior of the physical dynamic systems.
The extension is done as follows. Instead of assuming all
points in the set generated by the same mechanism, a measure
μ is first defined such that μ obeys the local power law in terms
of scale

μ Br xð Þð ÞprαðxÞ; ð3Þ
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