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ABSTRACT

We present a novel combined post-filtering (CPF) method to improve the accuracy of optical flow
estimation. Its attractive advantages are that outliers reduction is attained while discontinuities are well
preserved, and occlusions are partially handled. Major contributions are the following: First, the
structure tensor (ST) based edge detection is introduced to extract flow edges. Moreover, we improve
the detection performance by extending the traditional 2D spatial edge detector into spatial-scale 3D
space, and also using a gradient bilateral filter (GBF) to replace the linear Gaussian filter to construct a
multi-scale nonlinear ST. GBF is useful to preserve discontinuity but it is computationally expensive. A
hybrid GBF and Gaussian filter (HGBGF) approach is proposed by means of a spatial-scale gradient signal-
to-noise ratio (SNR) measure to solve the low efficiency issue. Additionally, a piecewise occlusion
detection method is used to extract occlusions. Second, we apply a CPF method, which uses a weighted
median filter (WMF), a bilateral filter (BF) and a fast median filter (MF), to post-smooth the detected
edges and occlusions, and the other flat regions of the flow field, respectively. Benchmark tests on both
synthetic and real sequences demonstrate the effectiveness of our method.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Motion is an intrinsic characteristic of the world [1], providing
essential information that can be used in a wide variety of image
processing and visual tasks, such as 3D-reconstruction, segmenta-
tion, tracking and video compression. One of the most successful
motion estimation approaches is the variational optical flow method
[2,3], due to two inherent advantages, i.e. its comprehensive func-
tional form and an efficient numerical optimization. The variational
optical flow method was introduced by Horn and Schnuck (HS) [4]. It
combines a local, gradient-based data matching term with a global
smoothness term. The data term assumes that each pixel's brightness
remains invariant during a short time. The smoothness term reg-
ularizes each pixel's flow by its neighbors' flow. It assumes that the
flow vector varies smoothly almost everywhere over the flow field. In
practice, however, these two basic constraints are seriously violated.
Various extensions and improvements have been proposed during
the past 30 years in order to overcome the drawbacks of the original
HS model.

These variations can generally be classified according to the
following three aspects: (1) Modification of the variational
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formulation, such as improvements of the data term to make the
algorithm more robust under illumination changes [5], invariant
under different types of motion [6], and more resistant to noise [7]
and outliers [6,7], and large displacements|8]. Modifications of the
regularizer's capability to handle motion discontinuity [9,10].
Selection of the optimal weighting parameter A to obtain a better
balance between the data term and the regularization term
[10,11]. (2) Pre-processing of the input frames to reduce violations,
such as noise suppression of the frames to remove, for example,
high frequencies that might have a negative influence on the
result. Commonly used filtering methods include Gaussian filter
[4], PDE filter [12] and non-local filter [13]. Most of these methods
do not only reduce noise, but also enhance important structures of
the frames [14]. (3) Post-processing of the flow field to improve
the accuracy, e.g. usage of available filters for smoothing, such as,
Kalman filter [15], median filter (MF) [14,16], and bilateral filter
(BF) [17,18].

Wedel et al. [16] successfully introduced a MF to remove the
flow noise. However, his MF approach over-smoothes the edges.
Sun et al. [14] proposed a modified WMF method to prevent this
kind of over-smoothing, and saved the computational time by solely
smoothing the detected motion boundaries with the Sobel edge
detector. However, this method still has some drawbacks. First, the
Sobel detector often performs poorly in extracting flow boundaries.
Second, wrong flow components in the MF [19] window can cause
serious errors. Surprisingly, although smoothing the flow field
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boundaries is a reasonable way to improve accuracy and efficiency,
few efforts have been devoted so far to analysis of the connection
between the smoothing performance and the extraction of flow
features (e.g. edges and occlusions). To the best of our knowledge,
this work is the first systematical analysis of the importance of the
above mentioned connection.

We present a novel 3D nonlinear ST based Harris edge detector
to identify flow edges, and apply a piecewise occlusion detection
approach to detect flow occlusions. The ST has first been proposed
by Forstner and Giilch [20]. Since it represents the first order
derivative information of an image, it can be used as a local
geometry indicator to analyze the geometric structure of a scalar-
valued data set (e.g. an image) or a vector-valued data set (e.g. the
flow field). Compared to traditional derivative-based methods, the
ST has two outstanding characteristics due to two Gaussian
smoothing operations: (1) smoothing the data set yields robust-
ness under noise by introducing an integration scale and (2)
integrating local structure information (e.g. orientation) from a
neighborhood makes ST able to distinguish features [21].

Since Gaussian smoothing is isotropic, it has some disadvan-
tages: (1) detailed and weak features, such as some textures are
smoothed out, (2) distinctive discontinuities such as edges are
blurred and, and (3) points belonging to different regions, such as
occluded points and non-occluded points, would be roughly
composed. These disadvantages are caused by the fact that the
Gaussian filter is fixed in both size and shape, and it cannot adapt
to the local structures. Therefore, the Gaussian filter based linear
ST cannot detect edges accurately. For instance, the identified
edges are often wider than the real edges or discontinuous.

Different anisotropic filtering methods have been proposed to
replace the linear Gaussian filter to construct a nonlinear ST, like
anisotropic diffusion [21], BF [17,18,22] and mean shift filtering
[23]. They can adapt to local structures, avoiding smoothness
across discontinuities and preserving useful information. The BF,
which extends the concept of Gaussian filter by adding a Gaussian
weighting function that depends on the difference between pixel
intensities, is most attractive [24] due to its inherent advantages:
(1) it is non-iterative, which makes it overcomes the instability of
the iterative method - since small errors in derivatives will be
magnified after each iteration, (2) only two parameters are needed
and these parameters have explicit geometrical and graphical
meaning, therefore, they are easy to be constructed and imple-
mented, and (3) as illustrated in [17], the BF can handle occlusion.
In this work, the BF is used to replace the Gaussian filter to
construct a nonlinear ST, and also it is used to replace the MF to
smooth the occlusions of the flow field.

The BF assigns higher weights to pixels with smaller spatial
and/or color distances computed with respect to the central pixel.
In this way, smoothing is implemented adapt to local structures. To
distinguish trivial structures from true corners, Zhang et al. [22]
introduced a GBF which uses both spatial and gradient distances to
smooth the 2D spatial ST. In this work, we introduce the GBF to
construct a nonlinear 3D ST to detect edges.

A direct implementation of the BF is computationally expen-
sive. It requires O(g2) operations per pixel. Especially when the
data set is large, it is too slow to be executed in real-time. Porikli
[25] proposed a fast O(1) BF using Taylor polynomials to approx-
imate the standard Gaussian BF. However, the Taylor polynomials
provide only good approximations of the range Gaussian function
just locally around the origin. Different from the O(1) BF method,
in this work, we apply a fast spatial-scale gradient based SNR
segmentation and a hybrid smoothing approach - HGBGF to treat
the low efficiency of the BF.

For a vector-valued data set, the primary derivative errors are
concentrated at discontinuities [26]. Because the Gaussian filter is
good enough to smooth flat regions and the BF is better at

smoothing discontinuities, combing the advantages of the two
filters can preserve edges, tackle occlusions and also reduce time
consumption. Therefore, we present a novel spatial-scale gradient
SNR measure to extract discontinuities. Then, we apply the BF and
the Gaussian filter to smooth the ST elements in separate regions,
respectively.

Multi-scale is an intrinsic property of the signal structure in
nature [27]. Liu et al. [28] gave a definition of edge scale and
pointed out that there exists an optimal scale of the edge - the
optimal scale is a parameter to indicate at which resolution(s) an
edge is most salient for a human. We extend the traditional spatial
ST based edge detector into spatial-scale space by adding scale
information. Integrating the HGBGF into our spatial-scale 3D ST, a
local pattern adaptive framework is constructed, resulting in
better detection of flow field edges.

Using a suitable filter, such as the MF, to post-filter the
intermediate flow field during incremental estimation and warp-
ing is an effective way to remove outliers and a key technique to
recent performance gains [14,16]. However, the MF is not good at
handling occlusions. In contrast, the BF has been successfully
applied to treat occlusion [17,18]. In this paper, we combine the
advantages of the WMF [14] and the BF[16], and propose a
Combined Post-Filtering (CPF) method to smooth the classified
flow field regions.

The paper is organized as follows: Section 2 describes the
proposed “Classic+CPF” optical flow algorithm. In Section 3, a
nonlinear 3D spatial-scale Harris edge detector to detect flow
edges, and a piecewise occlusion detection approach to extract
occlusions are introduced. A CPF method for post-filtering differ-
ent regions of the flow field with different filters is proposed in
Section 4. In Section 5, experiments and evaluations are conducted
to the proposed algorithm. The paper is concluded in Section 6,
which includes possibilities for future development.

2. “Classic+CPF” optical flow algorithm

Based on the brightness constancy assumption (data term), and
combined with a global smoothness constraint (smoothness term),
Horn and Schunck [4] proposed the variational optical flow method
for motion estimation between two successive frames I, I>:

Eu,v)= = /~Q(12(x+u,y+v,t+dt)7l1(x,y,t))2 dQ+/1/Q(|Vu|2+\vw2) Q2
—_—

data term

smoothness term
M

where (u,v) = (dx/dt, dy/dt) is the displacement vector field. It is a
2D projection of the real 3D motion in the world.

One state-of-the-art variational method is the TV-L1 non-local
algorithm - “Classic+NL” [14], which incorporates the WMF
during optimization to smooth the flow field. Due to the WMEF,
the accuracy is significantly improved. However, the WMF is poor
to handle occlusions (see Section 4.1). To overcome this problem,
we classify the optical flow field into three parts — edge regions,
occlusions and flat regions. As illustrated in Section 1, we combine
the advantages of WMF and BF, and use a CPF method to smooth
flow edges, occlusions as well as flat regions with three different
filters. Based on the baseline algorithm of “Classic+NL” [14], a
“Classic+CPF” algorithm is proposed:

E(u,v.u,v) = 3{pp(h(i.)) — @i+ U, j+ V) + A1 (ps(| tx]) +ps( iy |)
1)

+ps(1Vx D+ P51 Vy DY+ (] [u—T] |2+ [v—V]|?)

t 2 X Wi (1= Uiy |1V = Vi Dy iy
I JipJg € Nigjp

edge regions —weighted median Filter



Download English Version:

https://daneshyari.com/en/article/533274

Download Persian Version:

https://daneshyari.com/article/533274

Daneshyari.com


https://daneshyari.com/en/article/533274
https://daneshyari.com/article/533274
https://daneshyari.com

