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a b s t r a c t

We propose the use of an asymmetric dissimilarity measure in centroid-based clustering. The dissimilarity
employed is the Alpha–Beta divergence (AB-divergence), which can be asymmetrized using its parameters.
We compute the degree of asymmetry of the AB-divergence on the basis of the within-cluster variances.
In this way, the proposed approach is able to flexibly model even clusters with significantly different
variances. Consequently, this method overcomes one of the major drawbacks of the standard symmetric
centroid-based clustering.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In everyday life, people are used to consider the dissimilarity
between two entities as a symmetric relation. In many cases, it is
indeed symmetric. If it also satisfies the triangle inequality, it is
called metric or simply distance. Besides measuring a physical
distance, it can also serve as a measure of dissimilarity.

However, a dissimilarity does not need to be symmetric. One of
the first to come upon this idea was Amos Tversky, who ques-
tioned the geometric representation of similarity [1]. He argued
that the notion of similarity had been dominated by geometric
models, which represent objects as points in some coordinate
space and that dissimilarities between objects simply correspond
to the metric distances between the points. He argues that a
similarity statement, such as “a is like b”, is directional. It has a
subject and a referent, and is not equivalent to the statement “b is
like a”. His well-known example states that “North Korea is more
similar to China than China to North Korea”, since China is a larger
and a more general entity. Or, we say “the son resembles the
father” rather that “the father resembles the son”, since the father
is the more prominent entity. His claims were validated in his
numerous psychological experiments [2], and his idea was
undoubtedly an inspiration for many later works concerning the
asymmetric dissimilarities and the general problem of asymmetry
in data analysis.

A direct relation to Tversky's finding can be found in the work
of Nosofsky [3]. In contrast to the asymmetric form of similarity,
Nosofsky proposes to use a differential “bias”, which will be
assigned to individual objects, in contrary to similarity, which is
always determined between two objects. Employing this kind of
“bias” can be considered as equivalent to applying an asymmetric
similarity. And, according to Nosofsky, the “bias-based” models
may be even superior over the standard symmetric-similarity-
based models. The author even expresses his surprise by the fact
that symmetric similarity has gained the dominant position in the
world of data analysis.

A further continuation of the mentioned ideas appears in the
paper [4] by Johannesson, where the asymmetric relationship
between two objects is expressed using the traditional symmetric
similarity and the quotient of “prominences” between those
objects. The author compares his results with those obtained with
usage of the “bias-based” approach presented by Nosofsky.

Another similar concept closely related to the idea of Tversky
appears in the work of Martín-Merino and Muñoz [5], where the
asymmetric version of the Self-Organizing Map was proposed. The
authors notice the same asymmetric directional relationships
between objects of different levels of generality (or prominence).
Their example from the field of textual data analysis concerns the
dissimilarity between the two words – “mathematics” and
“Bayes”. The former is a more general entity, which makes the
relationship between those words strongly asymmetric. Sym-
metric dissimilarities produce large values for most pairs of
objects, and consequently, they do not reflect properly the asso-
ciations between objects of different levels of generality. As it
is stated in [5], asymmetry can be interpreted as a particular type
of hierarchy. In [6], Martín-Merino and Muñoz also find the cause
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of asymmetric nature of data in hierarchical relationships between
objects. Diego et al. [7] combine several similarity matrices into
one kernel and train a Support Vector Machine.

A continuation of the idea of hierarchical-caused asymmetry
can be found in [8], where the asymmetric version of the k-means
clustering algorithm was introduced. The author utilized a similar
assertion justifying the usage of asymmetric dissimilarities. Also in
[9], where the improved version of the asymmetric k-means
algorithm using the asymmetric coefficients was proposed, the
asymmetric dissimilarity was employed as preferable over the
standard symmetric one. In [9], the asymmetric coefficients were
used in order to determine the degree of asymmetry of dissim-
ilarity. This assured that the improved asymmetric k-means
algorithm properly adjusts to the properties of the analyzed
dataset.

Another direction of research arose focused on the issue of
aggregation of single dissimilarities resulting in obtaining a novel
complex dissimilarity measure. In [10], the aggregate asymmetric
dissimilarity is computed as a weighted sum of a fixed number of
input dissimilarities, while in [11], an appropriate asymmetric
distance aggregation function is formulated and employed.

In general, the problem of asymmetry in data analysis was also
studied by Okada and Imaizumi [12–15]. Their work is focused on
using the dominance point governing asymmetry in the proximity
relationships among objects, represented as points in a multi-
dimensional Euclidean space. They claim that ignoring or neglect-
ing the asymmetry in proximity analysis discards potentially
valuable information. On the other hand, Zielman and Heiser in
[16] consider the models for asymmetric proximities as a combi-
nation of a symmetric similarity component and an asymmetric
dominance component.

1.1. Our proposal

In this paper, we propose an asymmetric centroid-based
clustering approach using the asymmetric dissimilarity. As the
asymmetric dissimilarity, we have used the Alpha–Beta divergence
(AB-divergence), introduced recently in [17]. The formula of this
dissimilarity measure involves parameters, which can be used to
tune the degree of asymmetry of the dissimilarity. Therefore, this
quantity was particularly useful in our research. The values of the
appropriate parameters are computed based on the variances of
the clusters in the analyzed dataset. In this way, the geometric or
areal sizes of the clusters in the feature space are taken into
account, thereby overcoming one of the well-known drawbacks of
the traditional centroid-based clustering. The notion of the size of
a cluster refers here to the area occupied by the objects of that
cluster in the feature space. In other words, the size of a cluster in
this work is related to the variance of objects in that cluster, i.e.,
the within-cluster variance. As it is explained in Section 4, the
proposed approach assures that the dissimilarity in the clustering
process is determined more accurately than in case of standard
symmetric quantities (for example the Euclidean distance), and
consequently, a higher clustering performance is obtained.

The results of the experimental study conducted on real and
simulated data of high and low dimensionality confirm the
effectiveness of the proposed approach, which in most cases
outperforms four other investigated clustering methods.

1.2. Remainder of the paper

The rest of this paper is organized as follows: in Section 2, the
centroid-based clustering approach is described; Section 3 pre-
sents the AB-divergence and its most important properties; in
Section 4, the usage of the AB-divergence in the centroid-based
clustering, which constitutes the main proposal of the paper, is

explained; Section 5 reports the results of the experimental study
on three different datasets together with the discussion of the
results; while Section 6 summarizes the whole paper, and provides
concluding remarks.

2. Centroid-based clustering

Data clustering process aims to form clusters of possibly most
similar objects in a given analyzed dataset. An object represented as a
vector of d features can be interpreted as a point in the d-dimen-
sional space. A centroid-based clustering algorithm (also known as
k-centroids clustering algorithm [18–21]) is a statistical data analysis
tool used in order to form an arbitrary settled number of clusters in
the analyzed dataset. It can be formulated as follows: given n points
in a d-dimensional space and the number of desired clusters k, the
algorithm searches for a set of k clusters so as to minimize the sum of
squared distances or dissimilarities between each point and its
cluster centroid. The cluster centroid is a point being possibly the
best representation of the whole cluster.

The k-centroids clustering algorithm consists of two alternating
steps:

Step 1. Forming of the clusters: the algorithm iterates over the
entire dataset and allocates each object to the cluster
represented by the centroid – nearest to this object. The
nearest centroid is determined with the use of a selected
dissimilarity measure. Hence, for each object in the
analyzed dataset, the following minimal squared dissim-
ilarity has to be found:

min
j

D2ðxi JcjÞ; ð1Þ

where Dð�J �Þ is a selected dissimilarity measure, xi,
i¼ 1;…;nj, is an object in the jth cluster, cj, j¼ 1;…; k, is
the centroid of the jth cluster, and nj, j¼ 1;…; k, is the
number of objects in the jth cluster.

Step 2. Finding centroids of the clusters: for each cluster, a
centroid is determined on the basis of objects belonging
to this cluster. The algorithm calculates centroids of the
clusters so as to minimize a formal objective function, the
error distortion:

eðXjÞ ¼ ∑
nj

i ¼ 1
D2ðxi JcjÞ; ð2Þ

where Xj, j¼ 1;…; k, is the jth cluster, xi, i¼ 1;…;nj, is the
object in the jth cluster, cj, j¼ 1;…; k, is the centroid of the
jth cluster, nj, j¼ 1;…; k, is the number of objects in the
jth cluster, k is the number of clusters, and Dð�J �Þ is the
selected dissimilarity measure.

Both these steps must be carried out with the same dissim-
ilarity measure, in order to guarantee the monotone property of
the k-centroids algorithm.

Steps 1 and 2 have to be repeated until the termination
condition is met. The termination condition might be either
reaching convergence of the iterative application of the objective
function, or reaching the pre-defined number of cycles.

After each cycle (Steps 1 and 2), the value of the error function
– expressing the scattering of objects in the entire dataset – needs
to be computed for the entire analyzed dataset, in order to track
the convergence of the whole clustering process:

eðXÞ ¼ ∑
k

j ¼ 1
∑
nj

i ¼ 1
D2ðxi JcjÞ; ð3Þ
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