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a b s t r a c t

We introduce a multi-class generalization of AdaBoost with binary weak-learners. We use a vectorial
codification to represent class labels and a multi-class exponential loss function to evaluate classifier
responses. This representation produces a set of margin values that provide a range of punishments for
failures and rewards for successes. Moreover, the stage-wise optimization of this model introduces an
asymmetric boosting procedure whose costs depend on the number of classes separated by each weak-
learner. In this way the boosting algorithm takes into account class imbalances when building the
ensemble. The experiments performed compare this new approach favorably to AdaBoost.MH, Gentle-
Boost and the SAMME algorithms.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Boosting algorithms are learning schemes that produce an
accurate or strong classifier by combining a set of simple base
prediction rules or weak-learners. Their popularity is based not
only on the fact that it is often much easier to devise a simple but
inaccurate prediction rule than building a highly accurate classi-
fier, but also because of the successful practical results and good
theoretical properties of the algorithm. They have been exten-
sively used for detecting [1–4] and recognizing [5,6] faces, people,
objects and actions [7] in images. The boosting approach works in
an iterative way. First a weight distribution is defined over the
training set. Then, at each iteration, the best weak-learner accord-
ing to the weight distribution is selected and combined with the
previously selected weak-learners to form the strong classifier.
Weights are updated to decrease the importance of correctly
classified samples, so the algorithm tends to concentrate on the
“difficult” examples.

The most well-known boosting algorithm, AdaBoost, was intro-
duced in the context of two-class (binary) classification, but it was
soon extended to the multi-class case [8]. Broadly speaking, there
are two approaches for extending binary Boosting algorithms to the
multi-class case, depending on whether multi-class or binary weak-
learners are used. The most straightforward extension substitutes
AdaBoost's binary weak-learners by multi-class ones, this is the case
of AdaBoost.M1, AdaBoost.M2 [8], J-classes LogitBoost [9], multi-
class GentleBoost [10] and SAMME [11]. The second approach

transforms the original multi-class problem into a set of binary
problems solved using binary weak-learners, each of which
separates the set of classes in two groups. Schapire and Singer's
AdaBoost.MH algorithm [12] is perhaps the most popular approach
of this kind. It creates a set of binary problems for each sample and
each possible label, providing a predictor for each class. An alter-
native approach is to reduce the multi-class problem to multiple
binary ones using a codeword to represent each class label [13–15].
When training the weak-learners this binarization process may
produce imbalanced data distributions, that are known to affect
negatively in the classifier performance [16,17]. None of the binary
multi-class boosting algorithms reported in the literature address
this issue.

Another aspect of interest in multi-class algorithms is the
codification of class labels. Appropriate vectorial encodings usually
reduce the complexity of the problem. The encoding introduced in
[18] for building a multi-class Support Vector Machine (SVM), was
also used in the SAMME [11] and GAMBLE [19] algorithms and is
related to other margin-based methods [10]. Schapire uses Error
Correcting Output Codes for solving a multi-class problem using
multiple binary classifiers [12,13]. Our proposal uses vectorial
encodings for representing class labels and classifier responses.

In this paper we introduce a multi-class generalization of
AdaBoost that uses ideas present in previous works. We use binary
weak-learners to separate groups of classes, like [12,13,15], and a
margin-based exponential loss function with a vectorial encoding
like [11,18,19]. However, the final result is new. To model the
uncertainty in the classification provided by each weak-learner we
use different vectorial encodings for representing class labels and
classifier responses. This codification yields an asymmetry in the
evaluation of classifier performance that produces different
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margin values depending on the number of classes separated by
each weak-learner. Thus, at each boosting iteration, the sample
weight distribution is updated as usually according to the perfor-
mance of the weak-learner, but also, depending on the number of
classes in each group. In this way our boosting approach takes into
account both the uncertainty in the classification of a sample in a
group of classes and the imbalances in the number of classes
separated by the weak-learner [16,17]. The resulting algorithm is
called PIBoost, which stands for Partially Informative Boosting,
reflecting the idea that the boosting process collects partial
information about classification provided by each weak-learner.

In the experiments conducted we compare two versions of
PIBoost with GentleBoost [9], AdaBoost.MH [12] and SAMME [11]
using 15 databases from the UCI repository. These experiments
prove that one of PIBoost versions provides a statistically signifi-
cant improvement in performance when compared with the other
algorithms.

The rest of the paper is organized as follows. Section 2 presents
the concepts from binary and multi-class boosting that are most
related to our proposal. In Section 3 we introduce our multi-class
margin expansion, based on which in Section 4 we present the
PIBoost algorithm. Experiments with benchmark data are dis-
cussed in Section 5. In Section 6 we relate our proposal with others
in the literature and in Section 7 we draw conclusions. Finally, we
give the proofs of some results in two Appendices.

2. Boosting

In this section we briefly review some background concepts
that are directly related to our proposal. Suppose we have a set of
N labeled instances fðxi; liÞg; i¼ 1;…;N; where xi belongs to a
domain X and li belongs to L¼ f1;2;…;Kg, the finite label set of
the problem (when K¼2 we simply use L¼ fþ1; �1g). Henceforth
the words label and class will have the same meaning. PðLÞ will
denote the power-set of labels, i.e. the set of all possible subsets of
L. We will use capital letters, e.g. TðxÞ or HðxÞ, for denoting weak or
strong classifiers that take values on a finite set of values, like L.
Small bold letters, e.g. gðxÞ or fðxÞ, will denote classifiers that take
value on a set of vectors.

2.1. Binary boosting

The first successful boosting procedure was introduced by Freund
and Schapire with their AdaBoost algorithm [8] for the problem of
binary classification. It provides a way of combining the performance
of many weak classifiers, GðxÞ : X-L, here L¼ fþ1; �1g, to produce
a powerful “committee” or strong classifier

HðxÞ ¼ ∑
M

m ¼ 1
αmGmðxÞ;

whose prediction is signðHðxÞÞ.
AdaBoost can also be seen as a stage-wise algorithm fitting an

additive model [9,20]. This interpretation provides, at each round
m, a direction for classification, GmðxÞ ¼ 71, and a step size, αm, the
former understood as a sign on a line and the latter as a measure
of confidence in the predictions of Gm.

Weak-learners Gm and constants αm are estimated in such a
way that they minimize a loss function [9,12]

Lðl;HðxÞÞ ¼ expð� lHðxÞÞ
defined on the value of z¼ lHðxÞ known as margin [10,15].

To achieve this a weight distribution is defined over the whole
training set, assigning each training sample xi a weight wi. At each
iteration, m, the selected weak-learner is the best classifier
according to the weight distribution. This classifier is added to

the ensemble multiplied by the goodness parameter αm. Training
data xi are re-weighted with Lðl;αmGmðxÞÞ. So, the weights of
samples miss-classified by Gm are multiplied by eαm , and are thus
increased. The weights of correctly classified samples are multi-
plied by e�αm and so decreased (see Algorithm 1). In this way, new
weak-learners will concentrate on samples located on the frontier
between the classes. Other loss functions such as the Logit [9],
Squared Hinge [10] or Tangent loss [21] have also been used for
deriving alternative boosting algorithms.

Note here that there are only two possible margin values 71
and, hence, two possible weight updates e7αm in each iteration. In
the next sections, and for multi-class classification problems, we
will introduce a vectorial encoding that provides a margin inter-
pretation that has several possible values, and thus, various weight
updates.

Algorithm 1. AdaBoost.

1: Initialize the weight Vector W with uniform distribution
ωi ¼ 1=N; i¼ 1;…;N.

2: for m¼1 to M do
3: Fit a classifier GmðxÞ to the training data using weights W.
4: Compute weighted error: Errm ¼∑N

i ¼ 1ωiIðGmðxiÞa liÞ.
5: Compute αm ¼ ð1=2Þlog ðð1�ErrmÞ=ErrmÞ.
6: Update weights ωi’ωi � expð�αmliGmðxiÞÞ , i¼ 1;…;N.
7: Re-normalize W.
8: end for
9: Output Final Classifier: signð∑M

m ¼ 1αmGmðxÞÞ

2.2. Multi-class boosting with vectorial encoding

A successful way to generalize the symmetry of class-label
representation in the binary case to the multi-class case is using a
set of vector-valued class codes that represent the correspondence
between the label set L¼ f1;…;Kg and a collection of vectors
Y ¼ fy1;…; yKg, where vector yl has a value 1 in the l-th co-ordinate
and �1=ðK�1Þ elsewhere. So, if li¼1, the code vector representing
class 1 is y1 ¼ ð1; �1=ðK�1Þ;…; �1=ðK�1ÞÞ> . It is immediate to
see the equivalence between classifiers HðxÞ defined over L and
classifiers fðxÞ defined over Y:

HðxÞ ¼ lAL3fðxÞ ¼ ylAY : ð1Þ
This codification was first introduced by Lee et al. [18] for

extending the binary SVM to the multi-class case. More recently
Zou et al. [10] generalize the concept of binary margin to the
multi-class case using a related vectorial codification in which a K-
vector y is said to be a margin vector if it satisfies the sum-to-zero
condition, y>1¼ 0, where 1 denotes a vector of ones. This sum-to-
zero condition reflects the implicit nature of the response in
classification problems in which each yi takes one and only one
value from a set of labels.

The SAMME algorithm generalizes the binary AdaBoost to the
multi-class case [11]. It also uses Lee et al.'s vector codification and
a multi-class exponential loss that is minimized using a stage-wise
additive gradient descent approach. The exponential loss is the
same as the original binary exponential loss function and the
binary margin, z¼ lGðxÞ, is replaced by the multi-class vectorial
margin, defined with a scalar product z¼ y> fðxÞ; i.e.

Lðy; fðxÞÞ ¼ exp �y> fðxÞ
K

� �
: ð2Þ

Further, it can be proved that the population minimizer of this
exponential loss, arg minfðxÞEyjX ¼ x½Lðy; fðxÞÞ�, corresponds to the
multi-class Bayes optimal classification rule [11]

arg max
k

f kðxÞ ¼ arg max
k

ProbðY ¼ ykjxÞ:
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