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a b s t r a c t

This paper addresses the use of high order dissimilarity models in data mining problems. We explore

dissimilarities between triplets of nearest neighbors, called dissimilarity increments (DIs). We derive a

statistical model of DIs for d-dimensional data (d-DID) assuming that the objects follow a multivariate

Gaussian distribution. Empirical evidence shows that the d-DID is well approximated by the particular

case d¼2. We propose the application of this model in clustering, with a partitional algorithm that uses

a merge strategy on Gaussian components. Experimental results, in synthetic and real datasets, show

that clustering algorithms using DID usually outperform well known clustering algorithms.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering has been applied in several areas like machine
learning, pattern recognition, web mining, image segmentation,
genetics, and biology [1–3]. The main goal of clustering is to
arrange data objects in groups (clusters), such that objects belong-
ing to the same cluster are similar. It is a form of unsupervised
learning, since no information about the groups to which the
objects belong is known a priori. Two major clustering strategies
have been adopted in published methods: partitional and hier-
archical [4,1,5]. Hierarchical clustering techniques group objects
with a sequence of nested partitions, either from singleton clusters
to a cluster including all data (agglomerative strategy) or in the
opposite way (divisive strategy), while partitional clustering tech-
niques divide the data into clusters without the hierarchical
structure. For an overview of clustering techniques see [1,4–6].

Partitional methods put each data point into exactly one
cluster. Often, the user must set the number of clusters, k,
beforehand, and k is usually small. The choice of k can be
considered itself a model selection problem [7] which is often
non-trivial, especially for real-world datasets. One important class
of partitional methods is the one of prototype-based methods,
such as k-means [6] (with an associated minimum squared error
criterion; it is the simplest and most widespread clustering
algorithm), iterative self-organizing data analysis technique (ISO-
DATA) [8], k-medoids [3] and squared-error clustering [9], which
can work very well for compact and hyperspherical clusters.
Another class of partitional methods is the one of parametric

density approaches, including methods that estimate probability
density functions from data, such as Gaussian mixture decom-
position algorithms [10–12].

Hierarchical methods produce a set of nested partitions in a
hierarchical structure according to a proximity matrix; this struc-
ture is graphically represented by a dendrogram [4]. Agglomerative
methods start by considering each data point as one cluster, and
each partition is obtained from the previous one by merging two
clusters into a single cluster. Methods in this class include single-
link, complete-link, average-link, median-link, centroid-link,
weighted-link, Ward link [4], and more recent hierarchical algo-
rithms for handling large-scale datasets such as CURE [13], ROCK
[14], Chameleon [15] and BIRCH [16]. Divisive methods work in the
opposite way: one starts with a single cluster with all the objects
and a divisive procedure is applied repeatedly until all clusters are
singletons. This class of methods is not very used in practice due to
its computational cost: for a cluster with N objects, there are
2N�1
�1 possible divisions [1]. A drawback of most classical

hierarchical techniques is the failure to identify clusters with
arbitrary shapes and sizes, and the tendency to form spherical
structures in the data. Most of the hierarchical methods are
inspired in graph theory, such as single-link and complete-link.
However, graph theory can also be used in a different kind of
clustering algorithms: the clusters can be described in terms of
weighted graphs. CLICK [17] is an example of such methods.

Most of the clustering techniques require, implicitly or expli-
citly, a similarity measure between patterns, the choice of which
is difficult to make if one has no prior knowledge about cluster
shapes or structure. Most clustering algorithms use pairwise
distances between patterns, the most typical one being the
Euclidean distance. However, many other measures can be used,
such as the Mahalanobis distance [1,5]. Recently, a new third
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order dissimilarity measure has been proposed [18], the dissim-

ilarity increments (DIs), which are computed over triplets of
nearest neighbor patterns. The fact that this measure uses three
data points at a time gives more information about the patterns
lying in the same cluster, since a smooth evolution of the DIs
should occur if the patterns are in the same cluster, and high
values should occur for patterns lying in different clusters [18].

Based on this new dissimilarity measure, a hierarchical clus-
tering method has been proposed in [18]. The statistical model
proposed for the DIs in a cluster, based on visual inspection, was
the exponential distribution, with parameter equal to the inverse
of the mean of the increments. In this paper we theoretically
derive the DIs distribution (DID) under some approximations, and
empirically show that this new distribution is a better approx-
imation to the empirical distribution of the DIs than the
exponential one.

The novel DID is derived under the hypothesis of local Gaussian
generative models for the data in Rd, and is called d-DID. We
particularize the model for d¼2, hereafter referred as 2-DID; using
two statistical measures, we empirically show that 2-DID is a good
approximation to d-DID, and that both are better approximations
of the true DID than the exponential distribution. We then
construct a partitional clustering algorithm consisting of a merge
strategy, which iteratively accepts or rejects the merging of two
clusters based on this new distribution. In [19] we proposed a
likelihood-ratio test as the merge criterion, which merges pairs of
clusters with a p-value less than a given significance level a. In this
paper we propose a new parameter-free merge criterion based on
the Minimum Description Length principle.

This paper is structured as follows: Section 2 explains the
derivation of the DID for d-dimensional data (d-DID), and we write
this distribution as a function of a single parameter: the expected
value of the DIs. In Section 3 we present the particular case of d¼2,
and in Section 4 we show empirical evidence that this new
distribution is a better approximation to the empirical distribution
than the one proposed in [18]. In Section 5 we show how to use
this DID in a clustering algorithm, proposing two merge criteria:
likelihood-ratio test (LRT), presented in [19], and minimum
description length (MDL). We present, in Section 6, the perfor-
mance of the proposed algorithm on six synthetic datasets with
different characteristics (Gaussian and non-Gaussian clusters, arbi-
trary shape clusters and densities) and on eight real-world datasets
from the UCI Machine Learning Repository and 20-Newsgroups.
These results are compared with a Gaussian mixture decomposi-
tion (GMD), the hierarchical clustering algorithm proposed in [18]
and with some traditional clustering algorithms (single-link, aver-
age-link, complete-link, Ward-link and k-means), when the true
number of clusters is known. We also present a study of the
proposed method when the number of clusters is not known a

priori. Discussion and conclusions are in Sections 7 and 8, respec-
tively. In the Appendix, we detail the derivation of the DID.

2. Dissimilarity increments distribution for d-dimensional
data (d-DID)

Consider a set of patterns X. Given xiAX and some dissimilarity
measure between patterns, dð�,�Þ, let ðxi,xj,xkÞ be a triplet of nearest
neighbors, obtained as follows: xj is the nearest neighbor of xi, and
xk is the nearest neighbor of xj different from xi. The dissimilarity

increment (DI) [18] between these patterns is defined as

dincðxi,xj,xkÞ ¼ 9dðxi,xjÞ�dðxj,xkÞ9: ð1Þ

In the following subsections we will derive the probability
density function (PDF) for the DIs, using the Euclidean distance as
the dissimilarity measure.

2.1. Derivation of the DID model

Assume that X is a d-dimensional set of patterns (henceforth
called a cluster), and that its elements are independent and
identically distributed according to a multivariate Gaussian dis-
tribution, xi �N ðl,SÞ. With no loss of generality, we assume that
l¼ 0 and that S is diagonal (this only involves translation and
rotation of the data, which does not affect Euclidean distances). If
x denotes a sample from this Gaussian, we define the sphered
data xn as having its i-th entry given by xn

i � xi=Sii (this transfor-
mation is known as ‘‘whitening’’ or ‘‘sphering’’); xn

i thus follows
the standard normal distribution, N ð0;1Þ. The difference between
samples from two univariate standard normal distributions fol-
lows a normal distribution with covariance 2. It can be shown
that the squared Euclidean distance, ðDn

Þ
2
¼
Pd

i ¼ 1ðz
n

i Þ
2, where
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n

i �yn

i Þ=
ffiffiffi
2
p
�N ð0;1Þ, follows a chi-square distribution with d

degrees of freedom [20]. Thus, the PDF for ðDn
Þ
2 is given by

p
ðDn
Þ
2 ðxÞ ¼

2�d=2

Gðd=2Þ
xd=2�1 exp �

x

2

� �
, xA ½0,þ1½, ð2Þ

where Gð�Þ denotes the gamma function.
Furthermore, after the sphering, the transformed data has

circular symmetry in Rd. We define angular coordinates in a
ðd�1Þ-sphere, with yiA ½0,p½,i¼ 1, . . . ,d�2 and yd�1A ½0;2p½. Define
D� x�y� ðb1,b2, . . . ,bdÞ, where bi can be expressed in terms of
polar coordinates as

b1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2S11

p
Dn cos y1,

bi ¼
ffiffiffiffiffiffiffiffiffi
2Sii

p
Dn

Yi�1

k ¼ 1
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" #
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p
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:

The squared Euclidean distance in the original space is

D2
¼ 2 S11 cos2 y1þ

Xd�1

i ¼ 2

Sii

Yi�1

k ¼ 1

sin2 yk

 !
cos2 yi

"
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 !#
ðDn
Þ
2

� 2AðYÞðDn
Þ
2, ð3Þ

where AðYÞ, with Y¼ ðy1,y2, . . . ,yd�1Þ, is called the expansion

factor. Naturally, this expansion factor depends on the angle vector
Y. In practice, it is hard to properly deal with this dependence; so,
we will use the approximation that the expansion factor is
constant and equal to the expected value of the true expansion
factor over all angles Y. This expected value is given by

E½AðYÞ� ¼
p�d=2þ1

2G 1þd
2

� �Z, ð4Þ

where Z� trðSÞ (see Appendix A for the derivation).
Under this approximation, the transformation equation (3)

from the normalized space to the original space is given by

D2
¼

p�d=2þ1

Gð1þd=2Þ
ZðDn
Þ
2: ð5Þ

From (2) and (5) one can obtain the PDF of D2, and from there one
can obtain the PDF of D¼ dðx,yÞ as

p
D
ðyÞ ¼ 2GdðZÞyd�1 exp �CdðZÞy2

� �
, yA ½0,þ1½, ð6Þ

where we define GdðZÞ � dd=2Gðd=2Þd=2�12�dZ�d=2pd=2ðd=2�1Þ and
CdðZÞ � dGðd=2Þð4ZÞ�1pd=2�1.

The DI is defined as the absolute value of the difference of two
Euclidean distances. We have just derived the PDF of the
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