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a b s t r a c t

Support vector machine (SVM) is a powerful classification methodology, where the support vectors

fully describe the decision surface by incorporating local information. On the other hand, nonpara-

metric discriminant analysis (NDA) is an improvement over LDA where the normality assumption is

relaxed. NDA also detects the dominant normal directions to the decision plane. This paper introduces a

novel SVMþNDA model which can be viewed as an extension to the SVM by incorporating some

partially global information, especially, discriminatory information in the normal direction to the

decision boundary. This can also be considered as an extension to the NDA where the support vectors

improve the choice of k-nearest neighbors on the decision boundary by incorporating local information.

Being an extension to both SVM and NDA, it can deal with heteroscedastic and non-normal data. It also

avoids the small sample size problem. Moreover, it can be reduced to the classical SVM model, so that

existing softwares can be used. A kernel extension of the model, called KSVMþKNDA is also proposed

to deal with nonlinear problems. We have carried an extensive comparison of the SVMþNDA to the

LDA, SVM, heteroscedastic LDA (HLDA), NDA and the combined SVM and LDA on artificial, real and face

recognition data sets. Results for KSVMþKNDA have also been presented. These comparisons

demonstrate the advantages and superiority of our proposed model.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the context of supervised learning, given a training set X of
input vectors fxig

N
i ¼ 1, where xiARM

ðMZ1Þ 8i¼ 1,2, . . . ,N, along
with corresponding set T of tags ftig

N
i ¼ 1, where tiAZ 8i¼ 1,2,

. . . ,N, we wish to learn a model of dependency of the targets on
the inputs. The final objective is to be able to make accurate
predictions of t for unseen values of x. In the case of real world
data, the presence of class overlap in classification implies that
the principal modeling challenge is to avoid over-fitting of the
training set. Typically, we base our predictions upon some
function y(x) defined over the input space (or training space) X ,
and learning is the process of inferring the parameters or weights
of this function. We concentrate here on functions of the type
corresponding to those implemented by some relevant linear

models, such as, the support vector machine (SVM) [32] and the
linear discriminant analysis (LDA) [7,26]. The SVM and LDA make
predictions based on the function:

yðx;wÞ ¼
XM

i ¼ 1

wiaiþw0 ¼wT xþw0, ð1Þ

where x¼ faig
M
i ¼ 1 represents one input vector. Each ai represents

one attribute of the underlying class. w¼ fwig
M
i ¼ 1 and w0 represent

the unknown weights to compute.
The practical attractiveness of LDA can be explained by its

(intrinsically) low model complexity, and its ability to capture the
essential characteristics of the data distributions (mean and
covariance) from finite training data, and then estimating the
decision boundary using these ‘‘global’’ characteristics of the data.
The LDA has proven to be powerful and competitive to several
linear classifiers [31]. Its main goal is to find linear projections
such that the classes are well separated, i.e., maximizing the
distance between means of classes and minimizing their intra-class
variances. The LDA has successfully been applied in appearance-
based methods for object recognition, such as face recognition [24]
and mobile robotics [14].

However, the LDA is incapable of dealing explicitly with
heteroscedastic data, i.e., data in which classes do not have equal
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covariance matrices [26]. Moreover, most of the existing
LDA-based methods inherit the parametric nature from the
traditional LDA approach—the construction of the scatter
matrices relies on the underlying assumption that the samples
in each class satisfy the Gaussian distribution. Thus, they suffer
from performance degradation in cases of non-normal distribu-
tion [15]. To overcome the heteroscedasticity problem, Loog and
Duin [19] proposed the heteroscedastic LDA (HLDA) which is a
heteroscedastic extension of the Fisher criterion and is based on
the Chernoff distance. To relax the normality assumption, Fuku-
naga [15] proposed the nonparametric DA (NDA) which measures
the between-class scatter matrix on a local basis in the neighbor-
hood of the decision boundary. This is done based on the
observation that the normal vectors on the decision boundary
are the most informative for discrimination [5]. In the case of a
two-class classification problem, these normal vectors are
approximated by the k-NN’s from the other class for one point.
Therefore, NDA can be considered as a classification method
based on the ‘‘partially global’’ characteristics of data which are
represented by the k-NN’s. Although NDA gets rid of the under-
lying assumptions of LDA and the results in better classification
performance in case of non-Gaussian and heteroscedastic data, it
is not always an easy task to find a common and appropriate
choice of k-NN’s on the decision boundary for all data points to
obtain the best linear discrimination.

Support vector machine (SVM) [32] is another powerful
method which emphasizes the idea of maximizing the margin
or degree of separation in the training data. There are many
hyperplanes which can divide the data between two classes for
classification. One reasonable choice for the optimal hyperplane
is the one which represents the largest separation or margin
between the two classes. SVM tries to find the optimal hyperplane
using support vectors. The support vectors are the training
samples that approximate the optimal separating hyperplane
and are the most difficult patterns to classify [25]. In other words,
they consist of those data points which are closest to the optimal
hyperplane. As SVM deals with a subset of data points (support
vectors) which are close to the decision boundary, it can be said
that the SVM solution is based on the ‘‘local’’ characteristics of the
data. However, SVM does not take into consideration the global
or partially global properties of the class distribution on which
LDA-based methods (e.g., LDA, HLDA, NDA) are based.

In this paper, we propose an SVMþNDA classification model
which takes into account both the partially global characteris-
tics of data distribution represented by NDA and the local
characteristics represented by SVM. Being an extension to both
SVM and NDA, this classification model does not depend on
any global distribution pattern of training data. Therefore, it is
capable of dealing with heteroscedastic and non-normal data.
Moreover, our method combines the discriminatory informa-
tion represented by the normal vectors to the decision surface
and the support vectors which are crucial for accurate classifica-
tion. Also, our method avoids the small sample size problem,
which is a general problem for LDA-based methods (e.g., LDA,
HLDA, NDA) [10]. The small sample size problem arises when the
dimension of data is higher compared to the number of training
samples. Our method solves this problem by using the regular-
ization matrix [26]. We have particularly targeted the face
recognition problem as an application of interest to our proposed
model given that it has become one of the most challenging
tasks in the pattern recognition area [2]. Furthermore, face
recognition is also central to many other applications such as
video surveillance and identity retrieval from databases for
criminal investigations.

We also extend this linear SVMþNDA model to incorporate
nonlinear relations. Like any other linear classifier, the famous

kernel trick [32] has been used to extend this method. For kernel-
based methods, the predictions of class targets are based on the
following function:

yðx;wÞ ¼
XN

i ¼ 1

wi/FðxÞ,FðxiÞSþw0 ¼
XN

i ¼ 1

wiKðx; xiÞþw0, ð2Þ

where Kðx; xiÞ ¼/FðxÞ,FðxiÞS represents the inner product of FðxÞ
and FðxiÞ. The function FðxÞ : X-F describes a nonlinear mapping
from the input space X to a feature space F of higher dimension-
ality. Again, w¼ fwig

N
i ¼ 1 and w0 represent the unknown weights to

compute in kernel space. Hence, nonlinear classifiers have two
stages. First, a fixed nonlinear mapping transforms the data into a
feature space F . Then, a linear classifier is used to classify them in F .
Indeed, if we compare Eqs. (1) and (2), the major difference we see is
between the input vectors used (x vs. FðxÞ). Since kernel support
vector machines (KSVM) and kernel nonparametric discriminant
analysis (KNDA) [15,26,7] already exist, the philosophy behind our
kernel extension (KSVMþKNDA) is similar to that of the linear
method (SVMþNDA).

Rest of this paper is organized as follows. Section 2 provides
the formulation of the classical SVM and NDA methods along with
their kernel extensions. In Section 3, we present the derivation of
the novel SVMþNDA model as well as the kernel extended model
(KSVMþKNDA). We also show that both the SVMþNDA and the
KSVMþKNDA models are variations of the classical SVM, so that
the existing SVM softwares can be used. Section 4 provides a
comparative evaluation of the SVMþNDA model to the LDA, SVM
[32], NDA [15], HLDA [19] and combined SVM and LDA [29],
carried out on a collection of benchmark synthetic and real data
sets. The KSVMþKNDA model is also compared with the corre-
sponding kernel methods, namely KSVM, KNDA and the kernel
Fisher discriminant analysis (KFD) [26] for real data sets. This
section also contains results of our experiments on face recogni-
tion. Finally, Section 5 provides some conclusion.

2. The SVM and NDA methods

Let X1 ¼ fxig
N1

i ¼ 1 and X2 ¼ fxig
N1þN2

i ¼ N1þ1 be two different classes

constituting an input space of N¼N1þN2 samples or vectors in RM .
Here, class X1 contains N1 samples and class X2 contains N2

samples. Let the associated tags with these vectors be represented

by T ¼ ftig
N
i ¼ 1, where tiAfþ1,�1g 8i¼ 1,2, . . . ,N. As stated before,

the goal of classifiers like SVM or Fisher’s discriminant analysis is to
construct an optimal linear separating hyperplane from the training
data by using the function described in Eq. (1). In case of non-
linearity, the kernel trick is applied where the function F maps the

classes X1 and X2 to higher dimensional F1 ¼ fFðxiÞg
N1

i ¼ 1 and F2 ¼

fFðxiÞg
N1þN2

i ¼ N1
such that Kðxi; xjÞ ¼/FðxiÞ,FðxjÞS, 8i,j¼ 1,2, . . . ,N.

In the linear case, Fisher’s discriminant aims at finding linear
projections such that the classes are well separated, i.e., max-
imizing the distance between means of the classes and minimiz-
ing their intra-class variances. Finding the most discriminative
projectional direction wn can be described by the following optimi-
zation problem:

w� ¼ argmax
w

wT Sbw

wT Sww
, ð3Þ

where the within-class scatter matrix contains within-class or class
independent scatter information and is defined as

Sw ¼
1

N1þN2
ðN1S1þN2S2Þ, ð4Þ

where S1 and S2 are the covariance matrices for the two classes.
The between-class scatter matrix contains between-class scatter
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