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a b s t r a c t

Echo state networks (ESNs) constitute a novel approach to recurrent neural network (RNN) training,

with an RNN (the reservoir) being generated randomly, and only a readout being trained using a simple,

computationally efficient algorithm. ESNs have greatly facilitated the practical application of RNNs,

outperforming classical approaches on a number of benchmark tasks. This paper studies the formula-

tion of a class of copula-based semiparametric models for sequential data modeling, characterized by

nonparametric marginal distributions modeled by postulating suitable echo state networks, and

parametric copula functions that help capture all the scale-free temporal dependence of the modeled

processes. We provide a simple algorithm for the data-driven estimation of the marginal distribution

and the copula parameters of our model under the maximum-likelihood framework. We exhibit the

merits of our approach by considering a number of applications; as we show, our method offers a

significant enhancement in the dynamical data modeling capabilities of ESNs, without significant

compromises in the algorithm’s computational efficiency.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Recurrent neural networks (RNNs) constitute a significant
nonlinear approach for modeling dynamical systems as they
entail recurrent connections between neurons, thus allowing for
direct processing of temporal dependencies. This way, they are
capable of modeling a rich set of dynamical behaviors [1–5].
Among the numerous successful applications of RNNs, one might
mention grammatical inference studies, recognition and genera-
tion of strings from finite state machines, speech recognition, data
classification, and interval and rate invariance studies [6,7].

Nevertheless, although much effort has been spent on the
development of effective model parameter estimation schemes
for RNNs [8,9], most optimization methods lead to only mediocre
results compared to alternative methods for sequential data
modeling [10,11]. One reason for this is the ill-posed nature of
the problem, i.e., parameter (synapse weight) estimation involves
inversion of a nonlinear dynamical system from finite and noisy
data which typically is ill-posed [9,4]. Regularization has been
considered in the past as a method to ameliorate these issues.
Regularization in neural networks is usually achieved through the
addition of a penalty term in the cost function [4] which favors
simpler models over complex mappings. Penalization shrinks
nonsignificant weights, decreases the model variability, and
improves predictions. A principled approach to the estimation of

the regularization parameter(s) has been proposed in a Bayesian
setting in [12]. This probabilistic setting facilitates inference of the
regularization hyperparameters which are viewed as beliefs in the
uncertainties of the model parameters. However, this procedure
entails offline estimation of the covariance matrix (Hessian) that
might be computationally inappropriate, since it is often the case
that eigenvalues of the Hessian matrix turn out to decay to zero
causing numerical instabilities (i.e., Hessian singularities).

A groundbreaking and surprisingly efficient network structure
for RNNs, resolving all the aforementioned issues, was invented
independently in the seminal works of Jaeger [13], who called
these RNNs echo state networks (ESN), and Maass et al. [14], who
developed a similar approach for spiking neural networks and
called the derived model the liquid state machine (LSM). These
two innovative methodologies have given rise to the novel
paradigm of reservoir computing (RC) [15], under which both
the ESN and LSM network structures are usually subsumed. The
RC paradigm avoids the shortcomings of typical, gradient-des-
cent-based RNN training by setting up the network structure in
the following way [16]:

� A recurrent neural network is randomly created and remains
unchanged during training. This RNN is called the reservoir. It
is passively excited by the input signal and maintains in its
state a nonlinear transformation of the input history.
� The desired output signal is generated by a linear readout layer

attached to the reservoir, which computes a linear combina-
tion of the neuron outputs from the input-excited reservoir
(reservoir states).
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As is easy to infer from the preceding description, the function of
the reservoir in RC networks can be compared to that of the
kernel in kernel machine approaches (e.g., support vector
machines [17], relevance vector machines [18], and their variants)
[19]: input signals drive the nonlinear reservoir and produce a
high-dimensional dynamical ‘‘echo response,’’ which is used as a
non-orthogonal basis to reconstruct the desired outputs. A sche-
matic illustration of the RC approach is provided in Fig. 1.

Among the existing RC implementations, most of the attention
of the research community has been concentrated on the design of
the network topologies and the selection of the neuron types. In
this work, we focus on echo state networks, which usually employ
analog neurons, typically linear, sigmoid or leaky-integrator [20]
units, and simple sparsely connected graphs as their network
topologies. An extensively studied subject in the field of ESN
concerns the introduction of appropriate goodness measures of
the reservoir structure. Indeed, the classical feature that reservoirs
should possess is the echo state property. This property essentially
states that the effect of a previous reservoir state and a previous
input on a future state should vanish gradually as time passes, and
not persist or even get amplified. However, for most practical
purposes, the echo state property can be easily satisfied by merely
ensuring that the reservoir weight matrix W is contractive, i.e., by
scaling the reservoir weight matrix so that its spectral radius rðWÞ
(that is, its largest absolute eigenvalue) is less than one [21].

When modeling sequentially interdependent data, there is
always the need of measuring and expressing the nature and
degree of dependence by means of an explicit probabilistic model.
Such problems are usually addressed in the statistical machine
learning literature by postulating conditional models. As we have
already discussed, ESNs do not provide such capabilities; instead,
to capture the temporal dynamics of the modeled datasets, they
rely on the memory capacity of the employed reservoirs, and the
quality of the temporal information encapsulated in the gener-
ated reservoir outputs (reservoir states). In this work, we seek to
provide an explicit expression for the dependence between
successive observations modeled by means of an ESN. For this
purpose, we postulate an appropriate conditional density model,
which is based on a first-order Markov chain-type assumption for
the interdependence between the ESN-generated outputs, the
formulation of which is facilitated by utilization of the statistical
tool of copula [22].

The seminal work of Sklar [22] shows how to come up with
one form of dependence between random variables with given

marginal distributions; the statistical tool developed for this
purpose is called copula. The application of copulas in various
fields pertaining to data modeling is a rather recent trend; in
particular, modeling temporal dependence of sequentially
appearing data using copulas has recently gained much attention
[23–25]. Since the emergence of the concept of copula, s
everal copula families have been constructed, e.g., Gaussian,
Clayton, Frank, Gumbel, Joe, etc. [23] that enable capturing of
any form of dependence structure. By coupling different marginal
distributions with different copula functions, copula-based
time series models are able to model a wide variety of
marginal behaviors (such as skewness and fat tails), and depen-
dence properties (such as clusters, positive or negative tail
dependence) [23].

Copulas are powerful tools in statistical modeling because the
copula-based modeling problem can be always split into two
stages: the first stage deals with the identification of the marginal
distributions, and the second stage involves defining the appro-
priate copula for adequately modeling the dependence structure.
Such a two-stage approach is a convenient and common proce-
dure in copula modeling. Typical application areas of copula-
based models include gene prediction and cancer classification
based on gene-expression measurements from microarrays [26],
analyzing and pricing volatility of investment portfolios, credit
risk analysis, as well as reliability analysis of highway bridges
[27], and analysis of spike counts in neuroscience [28]. Note
though that a shortcoming of the copula approach consists
of the fact that it is not always obvious how to identify the
copula that adequately represents a needed dependence struc-
ture. Nevertheless, selection of the best-fit copula has been a topic
of rigorous research efforts during the last years, and motivating
results have already been achieved (see, e.g., [25]).

In this paper, we introduce a novel probabilistic regard
towards ESNs which utilizes the concept of copulas to yield a
conditional predictive distribution for the modeled sequential
data. Specifically, we begin by postulating an ESN to model the
examined dynamical observations; based on the postulated ESN, a
marginal distribution for the modeled data can be straightfor-
wardly obtained, by introducing a simple probabilistic assump-
tion to allow for the case of noise-contaminated observations.
Subsequently, we introduce the obtained marginal distributions
in the context of copula-based modeling, to eventually yield a
first-order Markov chain-like conditional predictive distribution
for the modeled data.

Estimation of copula-based multivariate density models is often
computationally difficult to perform by means of maximum-like-
lihood. To overcome optimization problems which can be encoun-
tered when using simple algorithms such as Newton–Raphson or
the expectation-maximization (EM) algorithm, inference for our
model is conducted by employing a two-step estimation method
known as inference functions for margins (IFM) [29]. On the first
step of the IFM method, the marginal model is maximized with
respect to its entailed (marginal) parameters, while, in the second
step, the copula model is maximized with respect to the entailed
(copula) parameters, using the marginal estimates obtained from
the first step. This way, model estimation becomes computation-
ally efficient, while comparison of different copulas can also be
conducted in a convenient way, by means of standard methodol-
ogies for assumption testing.

The efficacy of the proposed approach is evaluated considering
a number of application scenarios, and its performance is com-
pared to conventional echo state network formulations employ-
ing ridge regression-based readout training. The remainder of this
paper is organized as follows: In Section 2, we provide a brief
overview of the basic configuration of ESNs. In Section 3, we
concisely review the basic mathematical expressions pertaining

Fig. 1. Schematic overview of the reservoir computing approach [30].

S.P. Chatzis, Y. Demiris / Pattern Recognition 45 (2012) 570–577 571



Download	English	Version:

https://daneshyari.com/en/article/533472

Download	Persian	Version:

https://daneshyari.com/article/533472

Daneshyari.com

https://daneshyari.com/en/article/533472
https://daneshyari.com/article/533472
https://daneshyari.com/

