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a b s t r a c t

Due to its wide applicability, semi-supervised learning is an attractive method for using unlabeled data

in classification. In this work, we present a semi-supervised support vector classifier that is designed

using quasi-Newton method for nonsmooth convex functions. The proposed algorithm is suitable in

dealing with very large number of examples and features. Numerical experiments on various

benchmark datasets showed that the proposed algorithm is fast and gives improved generalization

performance over the existing methods. Further, a non-linear semi-supervised SVM has been proposed

based on a multiple label switching scheme. This non-linear semi-supervised SVM is found to converge

faster and it is found to improve generalization performance on several benchmark datasets.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few years, remarkable research work has been done
in supervised learning. Most of these learning models apply the
inductive inference concept, where prediction function, derived
only from the labeled input data, is used to predict the label of any
unlabeled object. A well-known two-class classification technique
is based on the support vector machine (SVM) Burges [1], where a
SVM solution corresponds to the maximum margin between the
two classes of labeled objects under consideration. But in many
applications, labeled data are scarce, manual labeling for the
purposes of training SVMs is often a slow, expensive, and error-
prone process. On the other hand, in many applications of machine
learning and data mining, abundant amounts of unlabeled data can
be cheaply and automatically collected. Some examples are text
processing, web categorization, medical diagnosis, and bioinfor-
matics. In spite of its natural and pervasive need, solutions to the
problem of utilizing unlabeled data with labeled examples have
only recently emerged in machine learning literature. Using both
labeled and unlabeled data for the purpose of learning is called
semi-supervised learning. An interested reader can refer to Zhu
[19] for a nice review on semi-supervised learning.

A major body of work in semi-supervised SVMs (S3VM) is based
on the following idea Chapelle et al. [2]: solve the standard SVM
problem while treating the unknown labels as additional
optimization variables. By maximizing the margin in the presence
of unlabeled data, one learns a decision boundary that traverses
through low data-density regions while respecting labels in the

input space. In other words, this approach implements the cluster
assumption for semi-supervised learning-that is, points in a data
cluster likely to have same class labels.

S3VM might seem to be the perfect semi-supervised algorithm,
since it combines the powerful regularization of SVMs with a
direct implementation of cluster assumption. However, its main
drawback is that the objective function is nonconvex and thus is
difficult to optimize. Due to this reason, a wide spectrum of
techniques have been applied to solve the nonconvex optimiza-
tion problem associated with S3VMs, for example, local combi-
natorial search Joachims [3]; gradient descent Chapelle et al. [2];
continuation techniques Chapelle et al. [15]; convex–concave
procedures Fung et al. [9]; branch-and-bound algorithms Bennett
et al. [8].

In this work, we propose to use the S3VM to solve semi-
supervised classification problems. In particular, we adopt the
model described in Joachims [3], focusing on the specific features
of the optimization problem to be solved, which can be
formulated as a nonsmooth nonconvex minimization problem.
To tackle this problem, we use a quasi-Newton method described
in Yu et al. [6]. The main contributions made by us and reported in
this work are:

1. We outline an implementation of a variant of S3VM Joachims [3]
designed for linear semi-supervised classification on large
datasets. As compared to state-of-the-art large scale semi-
supervised learning techniques described in Sindhwani et al.
[5,10], our method effectively exploits data sparsity and linearity
of the problem to provide superior scalability. The improved
generalization performance and training speed turn the proposed
scheme into a feasible tool for large scale applications.

2. We outline an implementation of a variant of S3VM Joachims
[3]; Collobert et al. [10] designed for non-linear semi-supervised
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classification on the datasets, where it is difficult to find a linear
decision boundary in the input space.

3. We conducted an experimental study on many binary
classification tasks with several thousands of examples and
features. This study clearly shows the usefulness of our
algorithm for large scale semi-supervised classification.

4. In summary, the work is carried out with an efficient scheme
for semi-supervised learning based on both linear and non-
linear SVMs.

This paper is organized as follows: Section 2 analyzes the S3VM
objective function and studies its characteristics. In Section 3 we
describe the quasi-Newton method for nonsmooth convex
functions. In Section 4 we present S3VM implementation using
quasi-Newton method. Section 5 compares our work with other
recent efforts in this area. Experimental results are reported in
Section 6. Section 7 contains some useful concluding comments.

Throughout the paper, we adopt the following notation: We
denote by J � J the Euclidean norm in Rd and by aTb or a � b the
inner product of the vectors a and b. Moreover, the subdifferential
of a convex function f at any point a is denoted by @f ðaÞ. We recall
that the subdifferential of a convex function f at point a is the set
of the subgradients of f at a, that is, the set of vectors gARd

satisfying the subgradient inequality,

f ðbÞZ f ðaÞþgT ðb�aÞ 8bARd:

2. Semi-supervised SVMs

We consider the problem of binary classification. The training
set consists of l labeled examples fxi,yig

l
i ¼ 1,yiAf�1,þ1g, and u

unlabeled examples {xi}i¼ l+ 1
n , with n¼ l+u, typically, l5u and

xiARd. Our goal is to construct a classifier that utilizes unlabeled
data and gives better generalization performance.

S3VM appends an additional term in the SVM objective function
whose role is to find a hyperplane far away from both the labeled
and the unlabeled points. Variants of this idea have appeared in the
literature Joachims [3], Bennett et al. [8], and Fung et al. [9]. Since
the formulation in Joachims [3] appears to be the most natural
extension of standard SVMs among these methods, we will focus
on developing its large scale implementation.

2.1. Linear case

The following optimization problem is setup for standard
S3VM:

JðwÞ9 min
w,fyig

n
i ¼ lþ 1

l
2
JwJ2

þ
1

l

Xl

i ¼ 1

l1ðyi,w
T xiÞþ

lu
u

Xn

i ¼ lþ1

l2ðjw
T xijÞ

s:t:
1

u

Xn

i ¼ lþ1

maxð0,yiÞ ¼ r where yi ¼ signðwT xiÞ, ð1Þ

where l1 is a loss function of w which measures the discrepancy
between yi and the predictions arising from w via wTxi. A loss
function commonly used for binary classification is the hinge loss
with yiAf�1,þ1g and the corresponding loss function is depicted
in Fig. 1(a). l2 is a margin penalty function involving the unlabeled
data, and l,lu are positive weight parameters. In Chapelle et al. [2],
Joachims [3,8], Fung et al. [9], and Chapelle et al. [15] the loss
function l2 is chosen as

l1ðyi,w
T xiÞ :¼maxð0,1�yiðw

T xiÞÞ, ð2aÞ

l2ðtÞ ¼
1�jtj for �1oto1,

0 otherwise

�
ð2bÞ

and the proposed algorithms therein are characterized by
different approaches to solve problem (1). The algorithm
proposed in Joachims [3] learns first the SVM classifier by using
the labeled dataset. Using this classifier, unlabeled patterns are
labeled. Then, the current solution is improved by switching the
labels of some unlabeled samples, selected on the basis of
appropriate heuristic techniques.

In Bennett et al. [8], the authors formulate the semi-supervised
SVM problem as a mixed integer program. Since they introduce a
binary variable for each unlabeled point, the problem can be
difficult to solve for a large number of unlabeled data. To avoid
this difficulty, in Fung et al. [9], a concave minimization problem
is tackled, and a stationary point is found by solving successive
linear programs.

In Eq. (1), the S3VM seeks a hyperplane w and the labels of the
unlabeled examples, so that the SVM objective function is
minimized, subject to the constraint that a fraction r of the
unlabeled examples be classified positive. But, the main drawback
of the objective function in (1) is that, it is not differentiable, see
Fig. 1(a) and moreover, due to the third term involving the
unlabeled points, it is even nonconvex, see Fig. 1(b).

Methods for solving problem (1) are reported in Chapelle et al.
[2,15], where in Chapelle et al. [2] the authors perform a standard
gradient descent method on a smooth approximation of the
objective function. In Chapelle et al. [15], the authors use a
deterministic annealing approach on a smoothed version of
objective function. Our approach is, indeed, to adopt some
recently proposed methods Yu et al. [6], Belloni [11], Teo et al.
[12] of the subgradient type, which are capable to cope with
nonsmoothness and nonconvex part is dealt by using multiple
label switching procedure Sindhwani et al. [5].

In the literature, some approaches introducing nonconvex loss
functions have been proposed. In particular, in Collobert et al.
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Fig. 1. Characteristics of loss functions (defined in (2a) and (2b)). (a) l1 loss on labeled data. (b) l2 loss on unlabeled data.
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