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a b s t r a c t

Tensor provides a better representation for image space by avoiding information loss in vectorization.

Nonnegative tensor factorization (NTF), whose objective is to express an n-way tensor as a sum of k

rank-1 tensors under nonnegative constraints, has recently attracted a lot of attentions for its efficient

and meaningful representation. However, NTF only sees Euclidean structures in data space and is not

optimized for image representation as image space is believed to be a sub-manifold embedded in high-

dimensional ambient space. To avoid the limitation of NTF, we propose a novel Laplacian regularized

nonnegative tensor factorization (LRNTF) method for image representation and clustering in this paper.

In LRNTF, the image space is represented as a 3-way tensor and we explicitly consider the manifold

structure of the image space in factorization. That is, two data points that are close to each other in the

intrinsic geometry of image space shall also be close to each other under the factorized basis.

To evaluate the performance of LRNTF in image representation and clustering, we compare our

algorithm with NMF, NTF, NCut and GNMF methods on three standard image databases. Experimental

results demonstrate that LRNTF achieves better image clustering performance, while being more

insensitive to noise.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Previous work has shown that the image variations of many
objects under variable lighting conditions can be effectively
modeled by low dimensional linear spaces [1]. To learn the image
subspace, matrix factorization techniques are actively explored in
recent years to find two or more lower rank matrices whose
product approximates the original matrix. Standard matrix fac-
torization techniques include principle component analysis (PCA),
singular value decomposition (SVD), nonnegative matrix factor-
ization (NMF) [2,3] etc. In each of these methods, an n1 � n2

image is unfolded into a high dimensional vector in Rn1�n2 and
the image space is represented as a high-dimensional matrix.

However, an image is intrinsically a two-dimensional matrix.
The vectorized representation fails to take into consideration the
spatial locality of pixels in an image and thus will suffer from
information loss [4] and usually lead to the curse of dimensionality

problem [5]. To better discover the inherent structures in image
space, it is important to retain the multidimensional structure of

the image data. Therefore, tensors or multidimensional arrays
become a natural choice for representing image space and tensor
decomposition techniques are exploited to gain more insight into
image data. Recently, nonnegative tensor factorization [6,7], which
is an extension to NMF, has gained much research interest due to its
efficient and meaningful representation. NTF algorithms are applied
in various domains to discover the latent structures in data sets,
including: computer vision [7], EEG data analysis [8,9], discussion
tracking in email [10], image representation [11,12,6] etc. Fried-
lander and Hatzdemonstrate [12] proposed a NTF algorithm with
sparseness constraints and demonstrated the effectiveness of their
approach on image data. Hazan et al. [11] used NTF to decompose
a set of images represented as a 3-way tensor. Their experi-
ments demonstrated NTF could generate more meaningful decom-
position and more efficient compression for images than NMF.
Comprehensive surveys of NTF algorithms and applications can be
found in [13,14].

By imposing nonnegative constraints in factorization, NTF
generates a parts-based representation for a data set that allows
only additive combination of the parts to form the whole. This
corresponds to our intuition about physical data sets and hence
NTF is considered as an efficient technique for learning the parts
of objects such as a set of images. The major limitation of NTF is
that it only sees Euclidean structure in data space. However,
many researchers have recently shown that the image space is
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generally a nonlinear manifold embedded in the high dimensional
ambient space [15–19]. Uncovering the manifold structure of the
image space is essential for effective image representation and
clustering tasks.

In this paper, we propose a novel Laplacian regularized
nonnegative tensor factorization (LRNTF) method for image
representation that explicitly takes into account the underlying
manifold structure of the image space. Given some images
sampled from the image manifold, we can build an adjacency
graph to model the local geometrical structure of the manifold.
LRNTF finds a factorization that respects this graph structure. That
is, data points that are close in the intrinsic geometry of the image
space shall thus be close to each other under the factorized tensor
basis. We then perform image clustering in this reduced tensor
subspace. In this work, we apply k-means in the tensor subspace
for clustering. k-means has been frequently used for image
clustering for its simplicity. However, its performance will
drop significantly when the dimensionality of the image space
is high [20]. Furthermore, manifold structure of the image space is
not considered in k-means and consequently its performance in
clustering data points sampled from nonlinear manifolds is
limited. By combining LRNTF and k-means, both limitations of
K-means can be overcome.

It is worthwhile to highlight several aspects of the LRNTF
proposed in this paper:

(1) LRNTF represents the image space as a 3-way tensor and
thus avoid information loss in vectorizing two dimensional
images data into one dimensional vector representation. There-
fore, LRNTF is expected to achieve better performance in image
representation and clustering tasks.

(2) The computation of LRNTF is efficient. Compared with the
original NTF algorithm, the only extra cost of LRNFT is computing
the Laplacian Regularization term, which is almost negligible.
Also, the tensor representation requires few parameters to be
independently estimated in clustering, so performance in small
data sets is good.

(3) LRNTF explicitly takes into account the underlying mani-
fold structure of the image space, which is modeled by an
adjacency graph. Although there exist some previous work that
takes into account the underlying manifold structure in nonne-
gative matrix factorization [21–23], no such work has been done
in NTF. Meanwhile, by preserving the neighborhood information
in the image manifold, LRNTF is less sensitive to noise and
outliers. This result is confirmed in our experiment.

(4) The work in this paper primarily focuses on the 3-way tensor
representation of image space. However, the algorithm and analysis
presented here can be naturally extended to higher order tensors.

The rest of the paper is organized as follows. In Section 2, we
give a brief review of NMF and NTF. We describe our LRNTF
algorithm in Section 3. The experimental results are presented in
Section 4. Finally, we give concluding discussions and suggestion
for future work in Section 5.

2. A brief review of NMF and NTF

NTF is usually considered as a generalization of NMF. To better
explain NTF, we give a brief description of both NMF and NTF in
this section.

2.1. NMF

The nonnegative matrix factorization (NMF) introduced by
Lee and Seung in [2] can be stated as follows: Given a data
Matrix V ARn�m with nonnegative elements, find two non-
negative matrices WARn�r and HARr�m whose product best

approximates W:

V �WH ð1Þ

The rank r of the factorization is generally chosen so that
ðnþmÞronm, leading to a compressed representation of data in V.
In this factorization, each data point vjAV can be viewed as linear
combination of the columns of W as follows:

vi �
Xr

j ¼ 1

wjhij ð2Þ

Thus the r columns of W can be taken as a basis optimized for this
linear approximation and each column of H becomes the new
encoding of each data point in this new basis W. Another view of
the factorization is to represent NMF in (1) with the following
bilinear model:

V �WH¼WBT
¼
Xr

i ¼ 1

wi � bi ð3Þ

where B is the transpose of H and � denotes outer products. That is,
the data matrix V ARn�m is approximated by a sum of linear
combination of rank-one nonnegative matrices wi � bi. As we are
going to see, this scheme can be easily extended to the tensor case.

The nonnegative constraints enable a parts-based representa-
tion because they allow only additive, not subtractive combina-
tions. NMF corresponds to the parts-based representation in
human cognition, as suggested by psychological and physiological
evidence in [24,25]. For this reason, NMF is widely applied in
many practical problems such as face analysis [26], document
clustering [27] and DNA gene expression analysis [28].

Lee and Seung proposed a solution to NMF by minimizing the
least-squares error in the approximation shown as follows [3]:

minJV�WHJ2
F ð4Þ

where J � J2
F denotes matrix Frobenius norm.

Although the above objective function is convex in W only or H

only, it is not convex in both variables together. Therefore, it is
unrealistic to expect an algorithm to find global minima in Eq. (4).
Instead, Lee and Seung presented a ‘‘multiplicative update’’ algo-
rithm to find a local minimum for the objective function in Eq. (4)
as follows:

wtþ1
ij ’wtþ1

ij

ðVHÞij

ðVHT HÞij
ð5Þ

htþ1
ij ’htþ1

ij

ðVWÞij

ðVWT WÞij
ð6Þ

Proofs of convergence for this multiplicative update algorithm
is presented in [3].

2.2. NTF

Similar to NMF, NTF factorizes data into a lower dimensional
space by introducing a more compact basis. If set up appropri-
ately, this new basis can describe the original data in a concise
manner, introduce some immunity to noise and facilitate general-
ization [7]. NTF sees an advantage over NMF in various applica-
tions including image representation and clustering, in which the
image space is modeled as a 3-way tensor and each image is
represented as a 2-way tensor (matrix). This avoids information
loss resulted by vectorization as used in NMF [29].

The canonical tensor factorization techniques include the
Tucker model [30] that is a higher-order form of principal
component analysis, and the CANDECOMP/PARAFAC (CP) model
[31,32] that decomposes a tensor as a sum of rank-one tensors.
The NTF discussed in this paper is an extension to the CP model.
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