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a b s t r a c t

This paper addresses the problem of optimal feature extraction from a wavelet representation. Our work

aims at building features by selecting wavelet coefficients resulting from signal or image decomposition

on an adapted wavelet basis. For this purpose, we jointly learn in a kernelized large-margin context the

wavelet shape as well as the appropriate scale and translation of the wavelets, hence the name ‘‘wavelet

kernel learning’’. This problem is posed as a multiple kernel learning problem, where the number of

kernels can be very large. For solving such a problem, we introduce a novel multiple kernel learning

algorithm based on active constraints methods. We furthermore propose some variants of this algorithm

that can produce approximate solutions more efficiently. Empirical analysis show that our active

constraint MKL algorithm achieves state-of-the art efficiency. When used for wavelet kernel learning,

our experimental results show that the approaches we propose are competitive with respect to the

state-of-the-art on brain–computer interface and Brodatz texture datasets.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In any pattern recognition problem, the choice of the features
used for characterizing an object to be classified is of primary
importance. Indeed, those features largely influence the perfor-
mance of the pattern recognition system. Usually, features are
extracted from original data and it can be a tricky task to craft
them, so that they capture discriminative characteristics. Yet, this
issue becomes even more complex when dealing with data
corrupted by noise.

For instance, in brain–computer interface (BCI) problems or in
other biomedical engineering classification problems like electro-
cardiogram (ECG) beat classification problems, several type of
features have been proposed in the literature. In some cases,
preprocessed time samples of the signal are directly used as features
[28]. In other situations, classical signal transforms [8,15,42,13,16]
such as wavelet transform or time-frequency transform are applied
to the signal before extracting features from these novel representa-
tions. However, the choices of wavelet bases or time-frequency
transforms used in those approaches are usually grounded on
criterion adapted for signal representation or signal denoising and
thus, they may not be optimal for classification.

In the same way, many works which dealt with texture
classification used features extracted from wavelet decomposition
[21,17]. In these two studies, the authors considered fixed wavelet
bases such as Coiflet or Daubechies wavelets and have justified
their choices based on the experimental results they achieved.

However, there is no guarantee about the optimality of such
wavelets, in the sense that some other wavelets with more
appropriate waveform may lead to better classification perfor-
mances. This difficulty of choosing a correct wavelet basis for
texture classification was already noted by Busch et al. [7]. Indeed,
their work clearly showed that basic wavelets such as Haar’s
wavelet may provide better features than complex ones. More-
over, they brought experimental evidences that combining simple
bases may produce more efficient features. All these points
emphasize the need for adapting the wavelet dictionary, or more
generally the discriminant basis dictionary, to the classification
problem at hand. This adaptation can be performed for instance by
designing a pattern recognition system which jointly optimizes a
dictionary and the classifier.

At the present time, this problem of learning discriminant
dictionary adapted to a problem at hand has attracted few atten-
tions. For instance, the trends followed by Huang and Aviyente [14]
and Mairal et al. [23] are based on ideas from signal representation
dictionary learning. Their approaches consist in selecting represen-
tative and discriminative features as atoms among an overcomplete
codebook (which is not necessarily based on wavelet). In these
works, the selection problem is cast as an optimization problem
with respect to a criterion which takes into account signal repre-
sentation error, discrimination power and sparsity.

Prior to these approaches, a stream of research [30,5] investi-
gated the way of choosing a wavelet basis for classification among
overcomplete wavelet packet decomposition [24]. This basis selec-
tion problem was grounded on several different criteria which only
consider discrimination ability instead of representation one. In
these works, however, the wavelet shape was kept fixed (classical
wavelets were considered) and the best wavelet basis resulting
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from a wavelet packet decomposition was selected. Following these
approaches of selecting optimal discriminant wavelet basis, some
recent works considered discriminative criteria for generating
discriminant wavelet waveforms so as to adapt the wavelet to the
data to be classified. For instance, Strauss et al. [33,34] and
Neumann et al. [25] tune their wavelet by maximizing the distance
in the wavelet feature space of the means of the classes to be
classified. Instead, Lucas et al. [22] consider the wavelet generating
filter as a parameter of their kernel-based classifier (a support
vector machine) and propose to select this parameter according to a
cross-validation error criterion.

In this work, we address the problem of discriminant diction-
ary learning by following the road opened by Strauss et al. [33]
and Lucas et al. [22]. Indeed, we consider the problem of wavelet
adaptation for wavelet-based signal classification, but in addition,
we propose to jointly

� learn the shape of the mother wavelet, since classical wavelet
such as Haar, or Daubechies ones may not be optimal for a
given discrimination problem,
� select the best wavelet coefficients that are useful for the

discrimination problem. Indeed, we believe that among all the
coefficients derived from a wavelet decomposition, most of
them may be irrelevant,
� combine features obtained from different wavelet shapes and

coefficient selections,
� and learn a large-margin classifier.

For this purpose, we cast this problem as a multiple kernel learning,
where each kernel is related to some wavelet coefficients resulting
from a parametrized wavelet decomposition. To this end, we first
show how to build kernels from a wavelet decomposition. Then, we
describe how the problem of selecting optimal wavelet shape and
coefficients can be related to a multiple wavelet kernel learning
problem. As a side contribution, we propose an active constraint
multiple kernel learning (MKL) algorithm grounded on the KKT
conditions of the primal MKL problem that is proved to achieve
state-of-the-art in term of computational efficiency compared to
recent MKL algorithms [35,9]. We also discuss some variants of our
MKL algorithm which are more efficient when the number of
kernels become very large or infinite at the expense of providing
an approximate solution of the learning problem. We want to
emphasize that our approach differs from those of Lucas et al. [11],
Strauss et al. [33] and Neumann et al. [25] as we essentially learn a
combination wavelet coefficients obtained from different optimal
wavelet waveforms while the mentioned works consider a single
adapted wavelet. Furthermore, as detailed in the sequel, our
approach is able to deal with wavelets built from longer quadrature
mirror filters (which have better smoothness properties).

The paper is organized as follows. Section 2 reviews some
backgrounds on quadrature mirror filters and parametrized wavelets
and shows how kernels can be built from wavelet decomposition.
Section 3 details the novel active kernel MKL algorithm that we use
for jointly learning wavelet kernel combinations and the classifier.
Experimental analysis on toy dataset, BCI problem and texture
classification are given in Section 4. Section 5 concludes the paper
and provides some final discussions and perspectives on this work.
For a sake of reproducibility, the code used for this work is available
at : http://asi.insa-rouen.fr/enseignants/� arakotom/code/wkl.html.

2. Wavelet kernels

In this section, we briefly review wavelets, quadrature mirror
filter banks and wavelet decomposition. We also present a general
way to extract features and kernels from such a decomposition.

2.1. Parametrized wavelet decomposition

Depending on the used wavelet basis, a signal or image wavelet
decomposition will have different property (e.g. different sparsity
pattern). Hence, as discussed in Mallat’s [24] book for signal
representation and denoising, the choice of the mother wavelet
shape has a strong impact on wavelet-based features for discrimi-
nation. In this section, we explain why parametrized quadrature
mirror filter banks are the adaptive tool we seek for generating
mother wavelet waveforms and wavelet-based features.

Fast wavelet transform (FWT) algorithm computes a discrete
wavelet transform (DWT) of a given signal using a quadrature
mirror filter bank (QMF). A QMF consists of a couple of high-pass
and low-pass filters h and g and is related to a single mother
wavelet [24]. Hence, there is a sort of mapping between wave-
forms and QM filters. As we restrict here to orthonormal wavelet
basis, such a basis can be fully described by the filter h of the
QMF. Formulas linking filters h and g, mother wavelet f and the
related scaling function c are omitted and can be found in [24].

Using analytic formula of QM filters (of a given length) is a simple
way for parametrizing QMF and thus wavelet waveform. Those
formulas being specific to the filter length, they do not provide
general framework for QMF generation. For instance, the following
equations enable us to parametrize QMF of length L¼4 [22]:

i¼ 0,3 : h½i� ¼
1�cosðyÞþð�1ÞisinðyÞ

2
ffiffiffi
2
p

i¼ 1,2 : h½i� ¼
1þcosðyÞþð�1Þi�1sinðyÞ

2
ffiffiffi
2
p

ð1Þ

where yA ½0,2p½ is a given angle. Formulas for other lengths of QMF
can also be derived but a recurrence hardly appears for different
lengths.

Among several possible parametrizations, we choose the angular
parametrization of QMFs proposed by Sherlock and Monro [31]. In
their paper, the authors have shown that any compactly supported
orthonormal wavelet can be generated using a proper set of angles
yiA ½0,2p½. They also demonstrated that a 2M filter coefficients {hi}
can be expressed in terms of M angular filters and proposed a
recursive algorithm to compute the QMF. This algorithm is briefly
exposed in the Appendix. Furthermore, they proved that in order for
the QM filter to generate an orthonormal wavelet basis, the
constraint

P
iyi ¼ p=4 has to be satisfied, which reduces the choice

to M�1 free parameters. Fig. 1 shows examples of wavelets
generated by the Sherlock–Monro algorithm for L¼4 (which gives
M¼1 for orthogonal wavelets). The two upper wavelets were
generated with angular parameters p=2 and p=3 and the lower
ones were selected during our experiments on a toy signal classi-
fication problem. We can note that the learned wavelet waveforms
are very different to the classical ones.

The advantage of Sherlock and Monro’s algorithm is that it
only needs recursive sums of sine and cosine for generating a
QMF, regardless of the filter length. Hence, it provides an elegant
and general way for parametrizing QMF. In the sequel, in order to
be independent of the QMF length, we used this algorithm as QMF
parametrization and for generating wavelet waveforms.

2.2. From wavelet to features and kernels

Since we want to integrate the process of extracting wavelet
features into the classifier learning process, our work can be
interpreted as a method for selecting the best mother wavelet
and the best elements of the resulting wavelet dictionary for a
classification task. As described in the sequel, we address this
problem by considering a multiple kernel learning approach.
Hence, we introduce kernels derived from wavelet decomposition.
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