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a b s t r a c t

We propose a novel approach to online estimation of probability density functions, which is based on

kernel density estimation (KDE). The method maintains and updates a non-parametric model of the

observed data, from which the KDE can be calculated. We propose an online bandwidth estimation

approach and a compression/revitalization scheme which maintains the KDE’s complexity low. We

compare the proposed online KDE to the state-of-the-art approaches on examples of estimating

stationary and non-stationary distributions, and on examples of classification. The results show that the

online KDE outperforms or achieves a comparable performance to the state-of-the-art and produces

models with a significantly lower complexity while allowing online adaptation.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Many tasks in machine learning and pattern recognition
require building models from observing sequences of data. In
some cases all the data may be available in advance, but proces-
sing all data in a batch becomes computationally infeasible for
large datasets. Furthermore, in many real-world scenarios all the
data may not available in advance, or we even want to observe
some process for an indefinite duration, while continually provid-
ing the best estimate of the model from the data observed so far.
We therefore require online construction of models.

Traditionally, parametric models based on the Gaussian mixture
models (GMM) [1] have been applied successfully to model the data
in terms of their probability density functions (pdf). They typically
require specifying the number of components (or an upper bound)
in advance [1,2] or implementing some data-driven criteria for
selection of the appropriate number of components (e.g., [3]).
Improper choice of the number of components, however, may lead
to models which fail to capture the complete structure of the
underlying pdf. Non-parametric methods such as Parzen kernel
density estimators (KDE) [4–6] alleviate this problem by treating
each observation as a component in the mixture model. There have
been several studies on how to efficiently estimate the bandwidth of
each component (e.g., [7–12]) and to incorporate the measurement
noise into the estimated bandwidths, e.g., [13]. Several researchers
have recognized the drawbacks of using same bandwidth for all
components. Namely, it is beneficial to apply small bandwidth to

densely populated regions of the feature space, while larger band-
widths may be appropriate for sparsely populated regions. As result,
non-stationary bandwidth estimators have been proposed, e.g.,
[11,14,15]. One drawback of the standard KDEs is that their
complexity (number of components) increases linearly with the
number of the observed data. To remedy this increase, methods
have been proposed to reduce the number of components
(compress) either to a predefined value [16,17], or to optimize some
data-driven criteria [18–20]. Recently, Rubio and Lobato [17] applied
the non-stationary bandwidths from [15] to the compressed dis-
tribution, and reported improved performance.

There have been several attempts to address the online
estimation in the context of merging the non-parametric quality
of the kernel density estimators with the Gaussian mixture
models in online applications. Typically, authors constrain their
models by imposing various assumptions about the estimated
distributions. Arandjelović et al. [21] proposed a scheme for
online adaptation of the Gaussian mixture model which can be
updated by observing as little as a single data-point at a time.
However, a strong restriction is made that data are temporally
coherent in feature space, which prevents its use in general
applications. Priebe and Marchette [22] proposed an online EM
algorithm, called active mixtures, which allows adaptation from a
single observation at a time, assumes the data are randomly
sampled from the underlying distribution, and includes a heur-
istic for allocating new components, which makes it less sensitive
to data ordering. Kenji et al. [23] adapted this approach to
compression of data-streams by volume prototypes. Song et al.
[24] aimed to alleviate the restrictions on data orderings by
processing data in large blocks.

Deleclerq and Piater [25] assume each data-point is a Gaussian
with a predefined covariance. All data are stored in the model and

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.patcog.2011.03.019

� Corresponding author at: Faculty of Computer and Information Science,

University of Ljubljana, Slovenia.

E-mail address: matej.kristan@fri.uni-lj.si (M. Kristan).

URL: http://www.vicos.uni-lj.si (M. Kristan).

Pattern Recognition 44 (2011) 2630–2642

www.elsevier.com/locate/pr
dx.doi.org/10.1016/j.patcog.2011.03.019
mailto:matej.kristan@fri.uni-lj.si
mailto:http://www.vicos.uni-lj.si
dx.doi.org/10.1016/j.patcog.2011.03.019


a heuristic is used to determine when a subset of the data
(Gaussians) can be replaced by a single component. Han et al.
[26] proposed an online approach inspired by the kernel density
estimation in which each new observation is added to the model
as the Gaussian kernel with a predefined bandwidth. The model’s
complexity is maintained through the assumption that the under-
lying probability density function can be approximated suffi-
ciently well by retaining only its modes. This approach deteriorates
in situations when the assumed predefined bandwidths of kernels
are too restrictive, and when the distribution is locally non-Gaussian
(skewed or heavy tailed distribution).

A positive side of imposing assumptions on the estimated
distribution is that we can better constrain the problem of
estimation and design efficient algorithms for the task at hand.
A downside is that once the assumptions are violated, the
algorithms will likely break down and deteriorate in performance.
In this paper we therefore aim at an algorithm, which would be
applicable to multivariate cases, would be minimally constrained
by the assumptions and therefore efficiently tackle the difficulties
of online estimation.

1.1. Our approach

We propose a new online kernel density estimator which is
grounded in the following two key ideas. The first key idea is that
unlike the related approaches, we do not attempt to build a
model of the target distribution directly, but rather maintain a
non-parametric model of the data itself in a form of a sample

distribution—this model can then be used to calculate the kernel
density estimate of the target distribution. The sample distribu-
tion is constructed by online clustering of the data-points. The
second key idea is that we treat each new observation as a
distribution in the form of a Dirac-delta function and we model
the sample distribution by the mixture of Gaussian and Dirac-delta
functions. During online operation the sample distribution is
updated by each new observation in essentially the following
three steps (Fig. 1a): (1) In the step 1, we update the sample
model with the observed data-point. (2) In the step 2, the updated
model is used to recalculate the optimal bandwidth for the KDE.
(3) In the step 3, the sample distribution is refined and com-
pressed. This step is required because, without compression, the
number of components in our model would increase linearly with
the observed data. However, it turns out that a valid compression
at one point in time might become invalid later, when new
data-points arrive. The result of these invalid compressions is
that the model misses the structure of the underlying distribution
and produces significantly over-smoothed estimates.

To allow the recovery from the early compression, we keep for
each component in the sample distribution another model of the data
that generated that component. This detailed model is in the form of
a mixture model with at most two components (Fig. 1b). The

rationale behind constraining the detailed model to two components
is that this is the simplest detailed model that allows detection of
early over-compressions. After the compression and refinement step,
the KDE can be calculated as a convolution of the (compressed)
sample distribution with the optimal kernel calculated at step 2.

Our main contribution is the new multivariate online kernel
density estimator (oKDE), which enables construction of a multi-
variate probability density estimate by observing only a single
sample at a time and which can automatically balance between
its complexity and generalization of the observed data-points. In
contrast to the standard bandwidth estimators, which require
access to all observed data, we derive a method which can use a
mixture model (sample distribution) instead and can be applied
to multivariate problems. To enable a controlled compression of
the sample distribution, we propose a compression scheme
which maintains low distance between the KDE before and after
compression. To this end, we propose an approximation to the
multivariate Hellinger distance on mixtures of Gaussians. Since
over-compressions occur during online estimation, we propose a
revitalization scheme, which detects over-compressed compo-
nents and refines them, thus allowing efficient adaptation.

The remainder of the paper is structured as follows. In Section 2,
we define our model. In Section 3, we derive a rule for automatic
bandwidth selection. We propose the compression scheme in
Section 4, where we also address the problem of over-compression.
The online KDE (oKDE) algorithm is presented in Section 5. In
Section 6, we analyze the influence of parameters, data order, and
the reconstructive and discriminative properties of the oKDE. We
compare the oKDE to existing online and batch state-of-the-art
algorithms on examples of estimating distributions and on classifi-
cation examples. We conclude the paper in Section 7.

2. The model definition

As stated in the introduction, we aim at maintaining a
(compressed) model of the observed data-points in the form of
a distribution model, and use this model to calculate the KDE
when required. We therefore start with the definition of the
distribution of the data-points. Each separate data-point can be
presented in a distribution as a single Dirac-delta function, with
its probability mass concentrated at that data-point. Noting that
the Dirac-delta can be generally written as a Gaussian with zero
covariance, we define the model of (potentially compressed)
d-dimensional data as an N-component Gaussian mixture model

psðxÞ ¼
XN

i ¼ 1

aifRsi
ðx�xiÞ, ð1Þ

where

fRðx�lÞ ¼ ð2pÞ�d=2
jRj�1=2eð�1=2ðx�lÞT R�1

ðx�lÞÞ ð2Þ

Fig. 1. A three-step summary of the online KDE iteration (a). The sample model Sðt�1Þ is updated by a new observation zt and compressed into a new sample model S(t).

An illustration of the new sample model S(t) (sample distribution psðxÞ along with its detailed model fqiðxÞgi ¼ 1:4) is shown in (b).
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