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a b s t r a c t

One of the main shortcomings of Markov chain Monte Carlo samplers is their inability to mix between

modes of the target distribution. In this paper we show that advance knowledge of the location of these

modes can be incorporated into the MCMC sampler by introducing mode-hopping moves that satisfy

detailed balance. The proposed sampling algorithm explores local mode structure through local MCMC

moves (e.g. diffusion or Hybrid Monte Carlo) but in addition also represents the relative strengths of

the different modes correctly using a set of global moves. This ‘mode-hopping’ MCMC sampler can be

viewed as a generalization of the darting method [1]. We illustrate the method on learning Markov

random fields and evaluate it against the spherical darting algorithm on a ‘real world’ vision application

of inferring 3D human body pose distributions from 2D image information.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that MCMC samplers have difficulty in mixing
from one mode to the other because it typically takes many steps
of very low probability to make the trip [2,3]. Recent improve-
ments designed to combat random walk behavior, like Hybrid
Monte Carlo and over-relaxation [4,2] do not solve this problem
when modes are separated by high energy barriers. In this paper
we show how to exploit knowledge of the location of the modes
to design a MCMC sampler that mixes properly between them.

We consider two possible scenarios where this advance
knowledge is present. In one example we have actively searched
for high probability regions using sophisticated optimization
methods [5,6]. Given these local maxima, we now desire to
collect unbiased samples from the underlying probability distri-
bution. In another example we are given data-cases and aim at
learning a model distribution to represent these data as accu-
rately as possible. In this case, the data itself is representative of
the low energy mode of a well fitted model.

This paper is organized as follows. In Section 2 we review some
popular Markov chain Monte Carlo methods. Then, in Section 3 we
introduce the new mode-hopping sampler and some extensions.
An additional proof of detailed balance and an auxiliary variable
formulation of the method appear in the Appendix. Section 4

explains and illustrates an application to learning Markov random
fields, while in Section 5 the generalized darting method is evaluated
against the spherical darting method on a ‘real world’ vision
application – learning human models and estimating 3D human
body poses from 2D image information.

2. Markov chain Monte Carlo sampling

Imagine we are given a probability distribution p(x) with
xAX � Rd a vector of continuous random variables. In the
following we will focus on continuous variables, but the algo-
rithm is easily extended to discrete state spaces. A very general
method to sample from this distribution is provided by Markov
chain Monte Carlo (MCMC) sampling. The idea is to start with an
initial distribution p0ðxÞ and design a set of transition probabil-
ities that will eventually converge to the target distribution pðxÞ.

The most commonly known transition scheme is the one
proposed in the Metroplis–Hastings (M–H) algorithm, where a
target point is sampled from a possibly asymmetric conditional
distribution Q ðxtþ1jxtÞ, where xt represents the current sample.
To make sure that detailed balance holds, i.e. pðxtÞQ ðxtþ1jxtÞ ¼

pðxtþ1ÞQ ðxtjxtþ1Þ, which in turn guarantees that the target dis-
tribution remains invariant under Q, we should only accept a
certain fraction of the proposed targets:

Paccept ¼min 1,
pðxtþ1ÞQ ðxtjxtþ1Þ

pðxtÞQ ðxtþ1jxtÞ

� �
ð1Þ
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In the most commonly used M–H algorithm, the transition
distribution Q is symmetric and independent of the energy sur-
face at location x. This simplifies (1) (the Q factors cancel), but
leads to slow mixing due to random walk behavior. It is however
not hard to incorporate local gradient information, dEðxÞ=dx, to
improve mixing speed. One could for instance bias the proposal
distribution Q ðxtþ1jxtÞ in the direction of the negative gradient
�dEðxÞ=dx and accept using (1):

xtþ1 ¼ xt�
Dt2

2

dEðxÞ

dx

����
x ¼ xt

þDtn ð2Þ

where n is a vector of independently chosen Gaussian variables
with zero mean and unit variance, and Dt is the stepsize. When
the stepsize becomes infinitesimally small this is called the
Langevin method and one can show that the rejection rate
vanishes in this limit.1

The Langevin method is a special case of a more general
sampling technique called Hybrid Monte Carlo (HMC) sampling
[4,2,7]. In HMC the particle is given a random initial momentum
sampled from a unit-variance isotropic Gaussian density and its
deterministic trajectory along the energy surface is then simu-
lated for T time steps using Hamiltonian dynamics. If this
simulation has no numerical errors the increase, DE, in the
combined potential and kinetic energy will be zero. If DE is
positive, the particle is returned to its initial position with a
probability of 1�expð�DEÞ. Numerical errors up to second order
are eliminated by using a ‘leapfrog’ method which uses the
potential energy gradient at time t to compute the velocity
increment between time t� 1

2 and tþ 1
2 and uses the velocity at

time tþ 1
2 to compute the position increment between time t and

tþ1. The Langevin method corresponds to precisely one step of
HMC (i.e. T¼1).

A host of clever MCMC samplers can be found in the literature.
We refer to the excellent review [2] for more information.

3. The mode-hopping MCMC algorithm

We start with reviewing the closely related darting algorithm
described in [1]. In darting-MCMC we place spherical jump
regions of equal volume at the location of the modes of the target
distribution. The algorithm is based on a simple local MCMC
sampler which is interrupted with a certain probability to check if
its current location is inside one of these spheres. If so, we initiate
a jump to the corresponding location in another sphere, chosen
uniformly at random, where the usual Metropolis acceptance rule
applies. To maintain detailed balance we decide not to move if we
are located outside any of the balls. It is not hard to check that this
algorithm maintains detailed balance between any two points in
sampling space.

In high-dimensional spaces this procedure may still lead to
unacceptably high rejection rates because the modes will likely
decay sharply in at least a few directions. Since these ridges of
probability are likely to be uncorrelated across the modes, the
proposed target location of the jump will have very low prob-
ability, resulting in almost certain rejection. In the following we
will propose two important improvements over the darting
method. Firstly, we allow the jump regions to have arbitrary
shapes and volumes and secondly these regions may overlap. The
first extension opens the possibility to align the jump regions
precisely with the shape of the high probability regions of the
target distribution. The second extension simplifies the design

and placement of the jump regions since we don’t have to worry
about possible overlaps of the chosen regions.

First consider the case when the regions are non-overlapping
but of different volumes. Like in the darting method we could
consider a one-to-one mapping between points in the different
regions, or we could choose to sample the target point uniformly
inside the new region. Because the latter is somewhat simpler
conceptually, we will use uniform sampling in this section. The
deterministic case will be treated in the next section. Also, to
simplify the discussion we will first consider the case where the
underlying target distribution is uniform, i.e. has equal probability
everywhere. Due to the difference in volumes, particles are more
likely to be inside a large region than in small ones. Thus, there
will be a larger flow of particles going from the bigger regions
towards the smaller ones violating detailed balance. To correct for
it we could reject a fraction of the proposed jumps from larger
towards smaller regions. There is however a smarter solution that
picks the target region proportional to its volume:

Pi ¼
ViP

jVj
ð3Þ

If we view the jumps between the various regions as a (separate)
Markov chain, this method samples directly from the equilibrium
distribution while a rejection method would require a certain
mixing time to reach equilibrium. Clearly, if the underlying
distribution is not uniform, we need the Metropolis acceptance
rule between the jump point and its image in the target region:

Paccept ¼min 1,
pðtÞ

pðxÞ

� �
ð4Þ

where t is the target point and x is the exit point.
Now, let us see what happens if two regions happen to

overlap. Again, we first consider sampling the target point uni-
formly in the new region, and consider a target distribution which
is uniform. Consider two regions which partly overlap. Due to the
fact that we use the probability Pi (3), each volume element dx
inside the regions has equal probability of being chosen. However,
points located in the intersection will be a target twice as often as
points outside the intersection. To compensate, i.e. to maintain
detailed balance, we need to reject half of the proposed jumps
into the intersection. In general, we check the number of regions
that contain the exit point, n(x), and similarly for the target point,
n(t). The appropriate fraction of moves that is to be accepted in
order to maintain detailed balance is min½1,nðxÞ=nðtÞ�. Combining
this with the Metropolis acceptance probability (4) we find

Paccept ¼min 1,
nðxÞpðtÞ

nðtÞpðxÞ

� �
ð5Þ

Putting everything together, we define the mode-hopping
MCMC sampler explained in Fig. 1.

3.1. Elliptical regions with deterministic moves

In the previous section we have uniformly sampled the
proposed new location of the particle inside the target region.
This is a very flexible method for which it is easy to prove detailed
balance. However, a deterministic transformation can be tuned
to map between points of roughly equal probability which is
expected to improve the acceptance rate. Consider for instance
the case that the energy surfaces near the regions is exactly
quadratic and have the same height (i.e. their centers have equal
probability). We can now define a transformation between
ellipses that maps between points of equal probability resulting
in a vanishing rejection rate. This is obviously not the case when
we use uniform sampling.

1 One can use more general biased proposal distributions, but the one defined

in (2) was chosen because of its vanishing rejection rate in the limit D-0.
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