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a b s t r a c t

Generalizations ofnonnegative matrix factorization (NMF) in kernel feature space, such as projected

gradient kernel NMF (PGKNMF) and polynomial Kernel NMF (PNMF), have been developed for face and

facial expression recognition recently. However, these existing kernel NMF approaches cannot

guarantee the nonnegativity of bases in kernel feature space and thus are essentially semi-NMF

methods. In this paper, we show that nonlinear semi-NMF cannot extract the localized components

which offer important information in object recognition. Therefore, nonlinear NMF rather than semi-

NMF is needed to be developed for extracting localized component as well as learning the nonlinear

structure. In order to address the nonlinear problem of NMF and the semi-nonnegative problem of the

existing kernel NMF methods, we develop the nonlinear NMF based on a self-constructed Mercer kernel

which preserves the nonnegative constraints on both bases and coefficients in kernel feature space.

Experimental results in face and expressing recognition show that the proposed approach outperforms

the existing state-of-the-art kernel methods, such as KPCA, GDA, PNMF and PGKNMF.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Nonnegative matrix factorization (NMF) [1,2], which aims to
find part-based representation of nonnegative data, is an unsu-
pervised subspace method. It decomposes the data into two
nonnegative matrices,1 the bases and the coefficients, in which
the data are represented as a non-subtractive combination of
bases. The nonnegativity constraints are compatible with the
intuitive notion of combining parts to form a whole. For example,
the bases represent the parts of face (nose, eyes, etc.) in face
representation, and these parts are combined together to com-
pose the face. Therefore, NMF is a promising approach for the
extraction of localized components. Due to intuitive interpret-
ability and part-based representation, NMF and its alternatives
have been widely applied to face recognition [3], multimedia
signal processing [4], document clustering [5], environmetrics [6],
chemometrics [7], and bioinformatics [8].

Classical NMF is a linear model and it may fail to discover the
nonlinearities of data. However, many real-life data have latent
nonlinear structures. For example, the distribution of face image
variations under different pose and illumination is complex and

nonlinear. Therefore, the performance of traditional NMF is limited.
Accordingly, it is necessary to develop the nonlinear NMF. We
suggest here using the combination of kernel technology and NMF
for this purpose. Kernel method is a powerful technique in
handling nonlinear correlations, and it has been widely used for
the extension of linear method to nonlinear version. The idea of
kernel method is to map the data nonlinearly into a kernel feature
space, where the nonlinearities will be linearized. Then, the linear
method can be performed in the kernel feature space to process
the nonlinear data. The great success of kernel to model the
nonlinearities attracts many researchers for in-depth exploring [9].
For example, kernel principal component analysis (KPCA) [10] and
generalized discriminant analysis (GDA) [11] were found to out-
perform their linear versions in different applications.

Recently, generalizations of NMF in kernel feature space,
namely polynomial kernel NMF (PNMF) [12] and projected gradi-
ent kernel NMF (PGKNMF) [13], have been introduced to model
NMF nonlinearly. They learn more useful latent features. Similar to
NMF, PNMF approximates the embedded data as the linear
combination of bases in kernel feature space by minimizing the
squared Euclidean distance. It develops multiplicative updating
rules that guaranteed the non-increasing evolution of the cost
function. But the updating algorithm is not guaranteed to converge
to the stationary points. Moreover, only the polynomial kernels are
usable in PNMF. Using projected gradient method, PGKNMF
successively optimizes two subproblems [14], which ensures that
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the limit point is a stationary point and that arbitrary positive
kernels can be used. However, neither PNMF nor PGKNMF guar-
anteed the nonnegative constraints on bases in kernel feature space
(cf. Section 3.1). Therefore, PNMF and PGKNMF are essentially semi-
nonnegative matrix factorization (semi-NMF) [15]2 other than NMF.
As shown in [15], semi-NMF performs worse than NMF in terms of
clustering accuracies. Furthermore, to the best of our knowledge, no
literature has studied the part-based representation or the classifi-
cation power of semi-NMF.

Thus, we pose the following two questions:

1. Is semi-NMF fit for object recognition?
2. If not, how to develop nonlinear NMF?

The above two questions will be answered in this paper in the
application of face recognition. For the first question, we theore-
tically illustrate that the bases of semi-NMF do not exhibit the
characteristics of sparsity (cf. Section 3.2) which is important for
localized component extraction and object recognition [3,16,17].
We also empirically compare the subspace representation and the
classification power of semi-NMF with those of NMF. The empiri-
cal findings are in accord with the theoretical analysis.

For the second question, different from the previous kernelized
methods, this paper develops a novel kernel mapping to impose
the nonnegativity. The kernel function induced by the mapping is
proven to be a Mercer one. The effectiveness of the proposed
algorithm is evaluated by face and facial expression recognition.
The results are encouraging, manifesting that nonlinear NMF has
superiority over nonlinear semi-NMF.

The rest of this paper is organized as follows. Section 2
introduces the related work briefly. Section 3 presents the short-
comings of PNMF and PGKNMF, which motivates the work of this
paper. The details of the proposed algorithm are described in
Section 4. Experimental comparisons are given in Section 5, and
the conclusions are drawn in Section 6.

2. Related work

In this section, we briefly describe the original NMF method
[1] and the related extending works [12,13].

2.1. Nonnegative matrix factorization (NMF)

Give a set of facial images fIig
n
i ¼ 1, where n is the number of

images. By stacking pixels of each image into a column vector xi,
one can get a training set X ¼ fx1, . . . ,xng �G, where xiARm, m is
the number of pixels for an image, G denotes the input space. The
xi’s are concatenated to form a matrix V ¼ ½x1, . . . ,xn�ARm�n. NMF
[1] aims to find an approximate decomposition

V �WH ð1Þ

by imposing the nonnegative constraints on W and H, where
WARm�r is the bases, HARr�n is the coefficients, r is the number
of bases. These constraints offer some degree of sparsity in bases
and coefficients which will be illustrated in Section 3.2. The (1)
can be casted as the problem of minimizing the reconstruction
error under the nonnegative constraints:

ENMF ðW ,HÞ ¼ JV�WHJ2
F ¼

X
ij

ðVij�ðWHÞijÞ
2

s:t: W ,HZ0, ð2Þ

where J � JF denotes the Frobenius norm.

It is unrealistic to find the global minima of problem (2) since
this problem is not convex for variables W and H. Lee and Seung
[2] employed coordinate-descent method and ensured that the
objective function was non-increasing after each iteration by
choosing appropriate steps. The NMF algorithm is described in
Algorithm 1.

Algorithm 1. NMF algorithm.

Initialize WijZ0,HijZ0,8i,j.

for k¼1,2,yuntil convergence do

Hij’Hij
ðWT VÞij
ðWT WHÞij

,

Wij’Wij
ðVHT
Þij

ðWHHT
Þij

,

Wij’
WijP

k

Wkj
:

end for

Comparing with other subspace methods with holistic com-
ponents, such as PCA and LDA, NMF can extract localized
components which offer advantages in object recognition, includ-
ing stability to local deformations, lighting variations, and partial
occlusion [3]. In face recognition, NMF has shown to be superior
to PCA and LDA [18]. Thus, NMF has been widely investigated
recently. In real world, many data exhibit nonlinear structure,
however, the linear NMF method cannot learn the nonlinear
relations between the data. Therefore, nonlinear NMF should be
developed. Two kernel-based nonlinear NMF algorithms have
been proposed and are introduced as follows.

2.2. Polynomial NMF (PNMF)

PNMF [12] is the variant of NMF in kernel feature space,
aiming at representing the images in a nonlinear way. Each image
is firstly embedded in a polynomial feature space P via a poly-
nomial kernel-induced nonlinear mapping

f : xAG/fðxÞAP: ð6Þ

The dot product in P can be written by means of polynomial
kernel /fðxÞ,fðyÞS¼ kðx,yÞ ¼ ðxT yÞd, where d is an integer.

The idea of PNMF is to find a set of bases Wf in P to approximate
the embedded images, i.e., fðxiÞ �Wfhi,i¼ 1,2, . . . ,n. The problem
is formulated as minimizing the reconstruction error in P:

EPNMF ðW
f,HÞ ¼ JVf�WfHJ2

F

s:t: wi,HZ0,i¼ 1, . . . ,r, ð7Þ

where Vf ¼ ½fðx1Þ, . . . ,fðxnÞ�,Wf ¼ ½fðw1Þ, . . . ,fðwnÞ�. Vectors wi

are called the pre-images of the bases. The detailed algorithm to
solve problem (7) is referred to [12].

2.3. Projected gradient kernel NMF (PGKNMF)

PGKNMF [13] is developed to remedy the limitations of PNMF:
(1) PNMF cannot guarantee that the limit point is a stationary
point, (2) Only polynomial kernel can be used. It solves problem
(7) by successively optimizing two subproblems:

EPNMF ðW
fÞ

s:t: wiZ0,i¼ 1, . . . ,r, with H fixed ð8Þ

and

EPNMF ðHÞ

s:t: HZ0 with Wf fixed: ð9Þ
2 Semi-NMF decomposes a matrix into a mixed-sign bases and a nonnegative

coefficients.
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