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a b s t r a c t

Manifold regularization (MR) is a promising regularization framework for semi-supervised learning,

which introduces an additional penalty term to regularize the smoothness of functions on data

manifolds and has been shown very effective in exploiting the underlying geometric structure of data

for classification. It has been shown that the performance of the MR algorithms depends highly on the

design of the additional penalty term on manifolds. In this paper, we propose a new approach to define

the penalty term on manifolds by the sparse representations instead of the adjacency graphs of data.

The process to build this novel penalty term has two steps. First, the best sparse linear reconstruction

coefficients for each data point are computed by the l1-norm minimization. Secondly, the learner is

subject to a cost function which aims to preserve the sparse coefficients. The cost function is utilized as

the new penalty term for regularization algorithms. Compared with previous semi-supervised learning

algorithms, the new penalty term needs less input parameters and has strong discriminative power for

classification. The least square classifier using our novel penalty term is proposed in this paper, which is

called the Sparse Regularized Least Square Classification (S-RLSC) algorithm. Experiments on real-world

data sets show that our algorithm is very effective.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Regularization theory was originally introduced to solve ill-posed
inverse problems [18]. In the past decades, regularization has shown
great power and been applied in many areas of machine learning,
such as regression, clustering, classification and model selection [10].
Many state-of-art machine learning algorithms, including Support
Vector Machines (SVMs) [19], Regularized Neural Networks (RNNs)
[14] and Regularized Least Square Classifier (RLSC) [17], can be
derived from the regularization framework.

Recently, in [4], Belkin et al. proposed a general Manifold
Regularization (MR) framework for a full range of learning problems
from unsupervised, semi-supervised to supervised. The framework
was developed in the setting of Reproducing Kernel Hilbert Spaces
(RKHS), and a new Representor theorem was obtained in this setting
for the regularization framework. In contrast to the traditional
regularization theory, which concentrates on the complexity of
functions in the functional space, the MR framework supplements
an additional penalty term to the traditional regularization based
on the assumption that data lie on an intrinsic low-dimensional
manifold. The additional penalty term is used to measure the
smoothness of functions on data manifolds, which will be referred
to as the (penalty) term on manifolds for short. Such a term can

improve the performance of the obtained learner by exploiting the
intrinsic structure of data. The MR algorithms, including the Laplacian
Regularized Least Square Classification (LapRLSC) and the Laplacian
SVM (LapSVM) methods [4], have been shown especially useful and
efficient in semi-supervised learning problems when both labeled
examples and unlabeled examples are available for learning.

Many semi-supervised learning methods can be unified in the
MR framework. The Discriminatively Regularized Least Square
Classification (DRLSC) method builds the penalty term on mani-
folds by integrating both discriminative and geometrical informa-
tion in each local region [23]. Although the method is proposed as
a supervised learning method, it can be applied to semi-super-
vised classification problems. The MR framework can also unify
many of the graph-based semi-supervised learning algorithms by
ignoring the complexity of functions, which only have the penalty
term on manifolds in the framework. Zhu et al. proposed a
semi-supervised learning method called the Gaussian fields and
harmonic functions (GFHF) method, based on a Gaussian random
field model [24]. Wang and Zhang proposed a semi-supervised
learning algorithm by using the local linear reconstruction coeffi-
cients, which is similar to the GFHF method [20].

Despite the success of these semi-supervised classification
methods, there are still some issues that have not yet been properly
addressed. In particular,

(1) Neighbors selection. Many graph-based methods, including the
MR framework, define the adjacency graphs by using a fixed
neighborhood size for all the data points. However, a fixed
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neighborhood size causes the difficulty of parameter selection
and cannot be adaptive to uneven data.

(2) Manifold assumption. Many graph-based methods, including
the MR framework, assume that high-dimensional data dis-
tribute on a low-dimensional manifold. However, for many
types of data, we lack convincing evidence for the manifold
structure.

(3) Explicit classifier for new points. Some graph-based methods do
not have an explicit multi-class classifier for novel examples,
which limits their application in on-line decision making tasks.

To address the above issues, we propose the sparse regularization
(SR) approach for semi-supervised learning. A novel penalty term
is defined using the sparse representation [22] of the data. With
the novel penalty term, the approach can derive classifiers in the
MR framework. Therefore, the proposed SR approach not only
inherits the advantages of fewer parameters and highly discrimi-
native ability from the sparse representation, but also has a
natural out-of-sample extension for novel examples, which is
inherited from the MR framework. Experiments on real-world
data sets demonstrate the effectiveness and highly discriminative
ability of our approach.

The rest of this paper is organized as follows. Some previous
works are introduced in Section 2. The proposed SR approach
and the derived Sparse Regularized Least Square Classification
(S-RLSC) algorithm are presented in Section 3. Then in Section 4,
experiments on benchmark real-world data sets are reported.
Finally, we conclude this paper in Section 5.

2. Previous works

In a general semi-supervised classification problem, the train-
ing data set is represented as fðxi,ziÞ,xlþ j,i¼ 1, . . . ,l,j¼ 1, . . . ,ug,
where l is the number of labeled data points, u is the number of
unlabeled data points, xiARN is a data point and ziAf�1,1g is the
class label of xi.

2.1. Regularization on explicit functions

Belkin et al. [4] proposed the MR framework based on the
theory of RKHS. Assuming that f is a real-valued function in the
RKHS HK , the MR framework can be expressed in the form

f n ¼ argmin
f AHK

1

l

Xl

i ¼ 1

Vðxi,zi,f ÞþgAJf J2
KþgIJf J2

I

( )
, ð1Þ

where V is some loss function, Jf J2
K is the norm of the function in

HK which controls the complexity of the classifier and Jf J2
I is

the penalty term to regularize the smoothness of the function on
manifolds. If

Jf J2
I ¼

1

ðlþuÞ2

Xlþu

i,j ¼ 1

ðf ðxiÞ�f ðxjÞÞ
2wij, ð2Þ

where wij are edge weights in the data adjacency graph, then it
follows by the Representer Theorem [4, Theorem 2] that the
solution of the optimization problem (1) admits the representation

f nðxÞ ¼
Xuþ l

i ¼ 1

aikðxi,xÞ ð3Þ

in terms of the labeled and unlabeled samples, where kð�,�Þ is some
Mercer kernel function associated with the RKHS HK . For different
choices of loss function V and Jf J2

I , different MR algorithms can be
derived from the MR framework (1). For example, if the loss
function V is defined to the square loss function

Vðx,z,f Þ ¼ ðz�f ðxÞÞ2

and Jf J2
I is defined by (2), then the Laplacian Regularized Least

Square Classifier (LapRLSC) can be obtained; if V is chosen as the
hinge loss function

Vðxi,zi,f Þ ¼
1�zif ðxiÞ if zif ðxiÞ40

0 otherwise

�

and Jf J2
I is again given as in (2), then the Laplacian Regularized

Support Vector Machines (LapSVMs) can be obtained (see [4]). By
using the square loss function as the loss function V and by making
the best use of the underlying discriminative and geometrical
information of the data manifold to define the penalty term Jf J2

I ,
a new MR algorithm called the DRLSC algorithm was obtained
in [23] from the MR framework (1). Although the DRLSC algorithm
was proposed as a supervised learning algorithm, it is similar with
the LapRLSC algorithm and can be used as a semi-supervised
learning algorithm.

2.2. Regularization on implicit functions

If the parameter gA is set to be zero, then the second term of the
MR framework (1) that controls the complexity of the classifier
vanishes. As a result, the feasible function f in (1) is not restricted to
being in the RKHS HK . In fact, the feasible function f can be any
function; in particular, it can be required to be an unknown or
implicit function satisfying that zi ¼ f ðxiÞ for i¼ 1, . . . ,l, so the error
part ð1=lÞ

Pl
i ¼ 1 Vðxi,zi,f Þ vanishes. Thus, the MR framework has only

the penalty term Jf J2
I on manifolds, where f is an unknown or

implicit function satisfying that zi ¼ f ðxiÞ for i¼ 1, . . . ,l: For unla-
beled data points xlþ i (i¼ 1, . . . ,u) define implicitly zlþ i ¼ f ðxlþ iÞ for
i¼ 1, . . . ,u, which are unknown and regarded as the labels of the
unlabeled data points xlþ i (or values of the function f at xlþ i)
(i¼ 1, . . . ,u). If we further define Jf J2

I ¼ ð1=2Þ
Plþu

i,j wijðzi�zjÞ
2,

where wij are edge weights in the data adjacency graph as defined
in Subsection 2.1, then the labels zlþ i of unlabeled data points can
be computed by minimizing Jf J2

I . Therefore, the minimization of
the penalty term on manifolds can also give new semi-supervised
learning algorithms.

Belkin and Niyogi proposed a manifold learning based classi-
fier [3], which is built by the eigenvectors of the Laplacian matrix.
Zhu et al. introduced the GFHF method based on a random field
model [24]. The GFHF method is defined on a weighted graph
superimposed on the whole data set, which comprises both
labeled and unlabeled data points. The pairwise similarities
between the data points are defined as

wij ¼ exp �
XN

k ¼ 1

ðxik�xjkÞ
2

s2
k

 !
,

where xik is the k-th component of the data point xi and sk is the
length-scale hyper-parameter for the k-th component.

Let W ¼ ðwijÞ be the (l+u)� (l+u) similarity matrix, let D

be the diagonal matrix of order l+u with Dii ¼
Plþu

j ¼ 1 wij and
let L¼D�W . Then the GFHF method minimizes the quadratic
function

EðZÞ ¼
1

2

X
i,j

wijðzi�zjÞ
2
¼ ZT LZ, ð4Þ

where Z ¼ ðz1, . . . ,zl,zlþ1, . . . ,zlþuÞ
T with zlþ i ¼ f ðxlþ iÞ, i¼ 1, . . . ,u:

The similarity matrix W (and also the diagonal matrix D) can be
split into four blocks:

W ¼
Wll Wlu

Wul Wuu:

 !

Assume that Z ¼ ðZT
l ZT

u Þ
T , where Zl ¼ ðz1, . . . ,zlÞ

T and Zu ¼

ðzlþ1, . . . ,zlþuÞ
T . Suppose Z minimizes the function in (4). Then
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