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a b s t r a c t

There are a variety of measures to describe classification performance with respect to different criteria

and they are often represented by numerical values. Psychologists have commented that human beings

can only reasonably manage to process seven or-so items of information at any one time. Hence,

selecting the best classifier amongst a number of alternatives whose performances are represented by

similar numerical values is a difficult problem faced by end users. To alleviate such difficulty, this paper

presents a new method of linguistic evaluation of classifiers performance. In particular, an innovative

notion of fuzzy complex numbers (FCNs) is developed in an effort to represent and aggregate different

evaluation measures conjunctively without necessarily integrating them. Such an approach well main-

tains the underlying semantics of different evaluation measures, thereby ensuring that the resulting

ranking scores are readily interpretable and the inference easily explainable. The utility and applic-

ability of this research are illustrated by means of an experiment which evaluates the performance of

16 classifiers using different benchmark datasets. The effectiveness of the proposed approach is

compared to conventional statistical approach. Experimental results show that the FCN-based

performance evaluation provides an intuitively reliable and consistent means in assisting end users

to make informed choices of available classifiers.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Pattern classification has been successfully applied to many
application domains. For instance, classifiers have been developed
in conjunction with feature selection approaches [1–3] to perform
tasks such as image analysis [4], face recognition, and remote
sensing. However, classifiers which are applied to different
problem domains and trained by various learning algorithms
can perform quite differently. In fact, evaluating classifier perfor-
mance is perhaps one of the most deceiving and tricky problems
in classifier design [5]. To tackle this important problem, a variety
of measures have been proposed to describe the classification
performance with respect to different criteria, ranging from
classification accuracy and error rate, through storage complexity
and computation time to sensitivity and robustness [6–8].

In principle, performance measures can be qualitative or
quantitative. Quantitative measures are naturally expressed by
numerical values. However, using such seemingly precise mea-
sures to compare a number of classifiers, their performances may
turn out to be very close in value. Such pure numerical values
with small differences may not make much sense to the user who

would like to make an informed choice of available classifiers. It
would be more appropriate and often desirable to describe the
relative performance of the classifiers using linguistic terms, such
as good, average and bad. The assessment in qualitative measures
often reflects the knowledge of domain experts and such mea-
sures are usefully represented by linguistic terms. Compared to
numerical values, linguistic terms make it easier for users to
understand the evaluation outcome. Indeed, human beings
appear to use qualitative reasoning when initially attempting to
gain an understanding of a problem.

It is worth noting that in order to obtain a fair evaluation of
classification performance, several measures may need to be
taken into account concurrently. For example, precision and recall

are two widely used statistical measures which jointly provide a
common indication of classifier performance. However, for many
classification tasks, these two statistical measures should not be
utilised in isolation, as neither measure alone contains sufficient
information to assess the performance. It can be trivial to achieve
a recall score of 1.0 by simply assigning all instances to a certain
class. Similarly, precision may remain high by classifying only a
few instances. To combat this, precision and recall are usually
combined into a single measure, such as the F-measure which is
the weighted harmonic mean of these two measures [9]. Unfor-
tunately, in so doing, the underlying semantics associated with
these two base measures may be destroyed, even if a qualitative
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version of the precision and recall measures are used. Thus, it is of
great interest and potentially beneficial to establish a new
mechanism which can maintain the associated semantics when
performing evaluation without necessarily using just one trans-
formed measure. Inspired by this observation, this paper proposes
a novel framework of fuzzy complex numbers (FCNs) that will
entail effective and efficient representation of different types of
evaluation measures concurrently and explicitly.

Note that the term FCN is not new; the concept of complex
numbers has been proposed in the literature. For example, a form
of fuzzy complex numbers has been defined in [10] as a mapping
from the conventional complex number plane to the real-valued
interval [0,1]. Such an FCN is therefore, simply a type-1 fuzzy
set [11]. Work on the differentiation and integration of this type
of FCNs has been proposed in [12,13], with more advanced
follow-on research on their mathematical properties reported
in [14–17]. Recently, in combining fuzzy complex analysis and
statistical learning theory, important theorems (of a learning
process) based on fuzzy complex random samples were devel-
oped [18]. This work further demonstrates the interesting proper-
ties of the so-called rectangular fuzzy complex numbers, which are
a special type of FCN as proposed in [10]. Another relevant
development is the notion that relates real complex numbers to
fuzzy sets [19]. It introduces a new type of set, named complex

fuzzy sets, to allow the membership value of a standard fuzzy set
to be represented using a classical complex number. However, as
discussed in [19], it may be difficult to identify suitable real-world
problems for the use of such complex-valued memberships.
Despite this obstacle, work has continued along this theme of
research. This is evident in that complex fuzzy sets have been
integrated with propositional logic to construct a specific instance
of fuzzy reasoning systems [20].

Existing research regarding the concept of FCNs is all framed by
either giving conventional complex numbers a real-valued mem-
bership or assigning a fuzzy set element to a complex number as
its membership value. These approaches are rather different from
what is proposed in this paper, where both the real and imaginary
values of an FCN are in general, themselves fuzzy numbers; each
with an embedded semantic meaning. By extending the initial
definition and calculus of the proposed FCNs as given in [21],
important algebraic properties, including closure, associativity,
commutativity and distributivity of such FCN are established in
the present work. This helps to support the aggregation process of
FCNs. This new aggregation approach enhances the original work
of [21] by allowing an arbitrary number of components of an FCN
to be integrated in a random order. Further, the newly derived
modulus of this type of FCN is introduced to impose an order over
a given set of FCNs. Apart from these theoretical contributions, this
work is applied to a completely new problem domain to gauge the
performance of classifiers. This differs significantly from what is
reported in [21]. The underlying development of this new
approach to FCNs is general. It offers great potential for other
application problems which exhibit similar characteristics as those
of multi-criteria performance evaluation (e.g. student performance
evaluation [22]).

The rest of this paper is organised as follows. Section 2
proposes the novel approach to the notion of FCNs, which extends
real-valued complex numbers to representing two-dimensional
linguistic-valued measures concurrently. In Section 3, this
approach is utilised to construct a general linguistic evaluation
method which effectively ranks the overall performance of
different classifiers. For computational simplicity, such a general
evaluation method is specified using the linear triangular fuzzy
sets. Details of the implemented classifier evaluator are also
presented in this section. Section 4 describes the experimentation
carried out on standard benchmark datasets and discusses the

evaluation results. The paper is concluded in Section 5, with the
perspective of further work pointed out.

2. Fuzzy complex numbers

2.1. Prerequisites

2.1.1. Fuzzy numbers

Fuzzy numbers are a special type of fuzzy sets which can be
used to represent imprecise quantities such as about 0.6. Fuzzy
numbers map real values from R on to a closed interval [0,1].

Definition 1. (Fuzzy numbers [23]) A fuzzy number, ~a, is defined as

~a ¼ fðx,m ~a ðxÞÞjm ~a ðxÞA ½0,1�,xARg,

and satisfies the following properties:

(a) Continuity: m ~a ðxÞ is a continuous function mapping from R to
a closed interval [0,1].

(b) Normality: i.e. (xAR and m ~a ðxÞ ¼ 1.
(c) Convexity: i.e. 8x,y,zAR, if xryrz then m ~a ðyÞZmin
ðm ~a ðxÞ,m ~a ðzÞÞ.

(d) Boundness of support: i.e. (SAR and 8xAR, if jxjZS then
m ~a ðxÞ ¼ 0.

2.1.2. Extension principle

The extension principle [24] provides a fundamental mechan-
ism to translate conventional boolean set-based concepts into
their fuzzy-set counterparts. In this work, it forms the foundation
to derive the arithmetic operations of the proposed FCNs.

Definition 2. Let f: Rn
�!R be a function and A1, y, An be fuzzy

sets. Then B ¼ f(A1, y, An) is a fuzzy set with the following
membership function:

mBðyÞ ¼
_

y ¼ f ðx1 ,...,xnÞ

ðmA1
ðx1Þ4 � � �4mAn

ðxnÞÞ: ð1Þ

Note that the operators 4 and 3 above denote a given t-norm
and s-norm, respectively. Throughout this paper, they are inter-
preted using the min and max operators.

2.2. Definition of FCNs

Inherit from the real complex numbers, an FCN, ~z, is defined in
the form of

~z ¼ ~aþ i ~b, ð2Þ

where both ~a and ~b are fuzzy numbers with membership
functions m ~a ðxÞ and m ~b ðxÞ, regarding a given domain variable x. ~a
is the real part of ~z while ~b represents the imaginary part, i.e.
Reð~zÞ ¼ ~a and Imð~zÞ ¼ ~b.

An FCN can be visually shown as in Fig. 1. Importantly, in
general, for a given ~z, both Reð~zÞ and Imð~zÞ are fuzzy. If ~b does not
exist, ~z degenerates to a fuzzy number. Further, if ~b does not exist
and ~a itself degenerates to a real number, then ~z degenerates to a
real number.

2.3. Operations on FCNs

The operations on the proposed FCNs are a straightforward
extension of those on real complex numbers. Let ~z1 ¼ ~aþ i ~b and
~z2 ¼ ~cþ i ~d be two FCNs, where ~a, ~b, ~c and ~d are fuzzy numbers with
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