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This paper presents the formulation of a combinatorial optimization problem with the following
characteristics: (i) the search space is the power set of a finite set structured as a Boolean lattice; (ii) the
cost function forms a U-shaped curve when applied to any lattice chain. This formulation applies for
feature selection in the context of pattern recognition. The known approaches for this problem are
branch-and-bound algorithms and heuristics that explore partially the search space. Branch-and-bound
algorithms are equivalent to the full search, while heuristics are not. This paper presents a branch-and-
bound algorithm that differs from the others known by exploring the lattice structure and the U-shaped
chain curves of the search space. The main contribution of this paper is the architecture of this
algorithm that is based on the representation and exploration of the search space by new lattice
properties proven here. Several experiments, with well known public data, indicate the superiority of
the proposed method to the sequential floating forward selection (SFFS), which is a popular heuristic
that gives good results in very short computational time. In all experiments, the proposed method got

better or equal results in similar or even smaller computational time.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A combinatorial optimization algorithm chooses the object of
minimum cost over a finite collection of objects, called search
space, according to a given cost function. The simplest architec-
ture for this algorithm, called full search, access each object of the
search space, but it does not work for huge spaces. In this case,
what is possible is to access some objects and choose the one of
minimum cost, based on the observed measures. Heuristics and
branch-and-bound are two families of algorithms of this kind. A
heuristic algorithm does not have formal guaranty of finding the
minimum cost object, while a branch-and-bound algorithm has
mathematical properties that guarantee to find it.

Here, it is studied a combinatorial optimization problem such
that the search space is composed of all subsets of a finite set with
n points (i.e., a search space with 2" objects), organized as a
Boolean lattice, and the cost function has a U-shape in any chain
of the search space or, equivalently, the cost function has a
U-shape in any maximal chain of the search space.
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This structure is found in some applied problems such as
feature selection in pattern recognition Duda et al. [5], Jain et al.
[7] and W-operator window design in mathematical morphology
[8]. In these problems, a minimum subset of features, that is
sufficient to represent the objects, should be chosen from a set of
n features. In W-operator design, the features are points of a finite
rectangle of Z2 called window. The U-shaped functions are formed
by error estimation of the classifiers or of the operators designed
or by some measures, as the entropy, on the corresponding
estimated join distribution. This is a well known phenomenon in
pattern recognition: for a fixed amount of training data, the
increasing number of features considered in the classifier design
induces the reduction of the classifier error by increasing the
separation between classes until the available data become too
small to cover the classifier domain and the consequent increase
of the estimation error induces the increase of the classifier error.
Some known approaches for this problem are heuristics.
A relatively well succeeded heuristic algorithm is the sequential
floating forward selection (SFFS) [11], which gives good results in
relatively small computational time.

There is a myriad of branch-and-bound algorithms in the
literature that are based on monotonicity of the cost-function
[6,10,14,15]. For a detailed review of branch-and-bound algo-
rithms, refer to Somol and Pudil [13]. If the real distribution of the
joint probability between the patterns and their classes
were known, larger dimensionality would imply in smaller
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classification errors. However, in practice, these distributions are
unknown and should be estimated. A problem with the adoption
of monotonic cost-functions is that they do not take into account
the estimation errors committed when many features are
considered (“curse of dimensionality” also known as “U-curve
problem” or “peaking phenomena” [7]).

This paper presents a branch-and-bound algorithm that differs
from the others known by exploring the lattice structure and the
U-shaped chain curves of the search space.

Some experiments were performed to compare the SFFS to the
U-curve approach. Results obtained from applications such as
W-operator window design, genetic network architecture identi-
fication and eight UCI repository data sets show encouraging
results, since the U-curve algorithm beats (i.e., finds a node with
smaller cost than the one found by SFFS) the SFFS results in
smaller computational time for 27 out of 38 data sets tested. For
all data sets, the U-curve algorithm gives a result equal or better
than SFFS, since the first covers the complete search space.

Though the results obtained with the application of the
method developed to pattern recognition problems are exciting,
the great contribution of this paper is the discovery of some lattice
algebra properties that lead to a new data structure for the search
space representation, that is particularly adequate for updates
after up-down lattice interval cuts (i.e., cuts by couples of intervals
[0,X] and [X,W]). Classical tree based search space representations
do not have this property. For example, if the Depth First Search
were adopted to represent the Boolean lattice only cuts in one
direction could be performed.

Following this Introduction, Section 2 presents the formaliza-
tion of the problem studied. Section 3 describes structurally the
branch-and-bound algorithm designed. Section 4 presents the
mathematical properties that support the algorithm steps. Section
5 presents some experimental results comparing U-curve to SFFS.
Finally, Conclusion discusses the contributions of this paper and
proposes some next steps of this research.

2. The Boolean U-curve optimization problem

Let W be a finite subset, P(W) be the collection of all subsets of
W, < be the usual inclusion relation on sets and, |W| denote the
cardinality of W. The search space is composed by 2" objects
organized in a Boolean lattice.

The partially ordered set (P(W), =) is a complete Boolean
lattice of degree |W| such that: the smallest and largest elements
are, respectively, § and W; the sum and product are, respectively,
the usual union and intersection on sets and the complement of a
set X in P(W) is its complement in relation to W, denoted by X¢.

Subsets of W will be represented by strings of zeros and ones,
with 0 meaning that the point does not belong to the subset and 1
meaning that it does. For example, if W = {(—1,0),(0,0), (+1,0)},
the subset {(—1,0), (0, 0)} will be represented by 110. In an abuse
of language, X = 110 means that X is the set represented by 110.

A chain A is a collection {A1,A,,..., A} = X = P(W) such that
Ai Ay < --- = Ag. A chain M < X is maximal in X if there is no
other chain C < X such that C contains properly M.

Let c be a cost function defined from P(W) to R. We say that ¢
is decomposable in U-shaped curves if, for every maximal chain
M = P(W), the restriction of ¢ to M is a U-shaped curve, i.e., for
every A,X,Be M, A= X =B = max(c(A), c(B)) > c(X).

Fig. 1 shows a complete Boolean lattice £ of degree 4 with a
cost function ¢ decomposable in U-shaped curves. In this figure, it
is emphasized a maximal chain in £ and its cost function. Fig. 2
presents the curve of the same cost function restricted to some
maximal chains in £ and in X = £. Note the U-shape of the curves
in Fig. 2.

Fig. 1. A complete Boolean lattice £ of degree 4 and the cost function
decomposable in U-shaped curves. X = £ — {0000,0010,0001,1110,1111} is a
poset obtained from £. A maximal chain in £ is emphasized. The element 0111 is
the global minimum element and 0101 is the local minimum element in the
maximal chain.

Our problem is to find the element (or elements) of minimum
cost in a Boolean lattice of degree |W|. The full search in this space
is an exponential problem, since this space is composed by 2!
elements. Thus, for moderately large |W|, the full search becomes
unfeasible.

3. The U-curve algorithm

The U-shaped format of the restriction of the cost function to
any maximal chain is the key to develop a branch-and-bound
algorithm, the U-curve algorithm, to deal with the hard combina-
torial problem of finding subsets of minimum cost.

Let A and B be elements of the Boolean lattice £. An interval
[A,B] of £ is the subset of £ given by [A,B]={X e L : A= X = B}. The
elements A and B are called, respectively, the left and right
extremities of [A, B]. Intervals are very important for characterizing
decompositions in Boolean lattices [2,4].

Let R be an element of L. In this paper, intervals of the type
[0,R] and [R, W] are called, respectively, lower and upper intervals.
The right extremity of a lower interval and the left extremity of an
upper interval are called, respectively, lower and upper restric-
tions. Let R; and Ry denote, respectively, collections of lower and
upper intervals. The search space will be the poset X(R.,Ry)
obtained by eliminating the collections of lower and upper
restrictions from £, ie, X(RLRy)=L-U{0,R]:ReR}—
U{[R, W] : Re Ry}. In cases in which only the lower or the upper
intervals are eliminated, the resulting search space is denoted,
respectively, by X(R;) and X(Ry) and given, respectively, by
X(Ry)=L—U{0,R]: Re R} and X(Ry) =L — U{[R,W]: Re Ry}.

The search space is explored by an iterative algorithm that, at
each iteration, explores a small subset of X(R;,Ry), computes a
local minimum, updates the list of minimum elements found and
extends both restriction sets, eliminating the region just explored.
The algorithm is initiated with three empty lists: minimum
elements, lower and upper restrictions. It is executed until the
whole space is explored, i.e., until X(R;, Ry) becomes empty. The
subset of X(R;,Ry) eliminated at each iteration is defined from
the exploration of a chain, which may be done in down-up or up-
down direction. Algorithm 1 describes this process. The direction
selection procedure (line 5) can use a random or an adaptative
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