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The minimum sum-of-squares clustering problem is considered. The mathematical modeling of this
problem leads to a min-sum-min formulation which, in addition to its intrinsic bi-level nature, has the
significant characteristic of being strongly nondifferentiable. To overcome these difficulties, the resolution,
method proposed adopts a smoothing strategy using a special C∞ differentiable class function. The final
solution is obtained by solving a sequence of low dimension differentiable unconstrained optimization
subproblems which gradually approach the original problem. The use of this technique, called hyperbolic
smoothing, allows the main difficulties presented by the original problem to be overcome. A simplified
algorithm containing only the essentials of the method is presented. For the purpose of illustrating both
the reliability and the efficiency of the method, a set of computational experiments was performed,
making use of traditional test problems described in the literature

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Cluster analysis deals with the problems of classification of a set
of patterns or observations, in general represented as points in a
multidimensional space, into clusters, following two basic and si-
multaneous objectives: patterns in the same clusters must be similar
to another (homogeneity objective) and different from patterns of
other clusters (separation objective), see Hartingan [1] and Späth [2].

Clustering is an important problem that appears in the broadest
spectrum of applications, whose intrinsic characteristics engender
many approaches to this problem, see Dubes and Jain [3], Jain and
Dubes [4] and Hansen and Jaumard [5].

In this paper, a particular clustering problem formulation is
considered. Among many criteria used in cluster analysis, the most
natural, intuitive and frequently adopted criterion is the minimum
sum-of-squares clustering (MSSC). This criterion corresponds to the
minimization of the sum-of-squares of distances of observations to
their cluster means, or equivalently to the minimization of within-
group sum-of-squares. It is a criterion for both the homogeneity and
the separation objectives, as, according to the Huygens theorem,
minimizing the within-cluster inertia of a partition (homogeneity
within the cluster) is equivalent to maximizing the between-cluster
inertia (separation between clusters).
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The minimum sum-of-squares clustering (MSSC) formulation
produces a mathematical problem of global optimization. It is both
a nondifferentiable and a nonconvex mathematical problem, with a
large number of local minimizers. It is one of the problems in the
NP-hard class [6].

In the cluster analysis scope, algorithms use, traditionally, two
main strategies: hierarchical clustering methods and partition clus-
tering methods [5,7]. Hierarchical methods, essentially heuristic pro-
cedures, produce a hierarchy of partitions of the set of observations
according to an agglomerative strategy or to a divisive one. In the
former case, the general algorithm starts from an initial partition,
in which each cluster contains one pattern, and successively merges
two clusters on the basis of a similarity measure until all patterns are
in the same cluster. In the latter case, the general algorithm starts
from an initial partition with all patterns in the same cluster and,
by successive bipartitions, reaches a partition in which each cluster
contains one single pattern. In both strategies, the best partition is
chosen, by a suitable criterion, from the hierarchy of partitions ob-
tained.

Partition methods, in general, assume a given number of clusters
and, essentially, seek the optimization of an objective function mea-
suring the homogeneity within the clusters and/or the separation
between the clusters. Heuristic algorithms of the exchange type as
the traditional k-means algorithm [8] and variations thereof [2,9] are
frequently used to find a local minimum of the objective function.
However, any mathematical programming technique can be applied
to solve the global optimization problem: dynamic programming
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[10], branch and bound [11], interior point algorithms [12], bilin-
ear programming [13], all kinds of metaheuristics (for instance, see
[14,15]) and nonsmooth optimization [16].

The core focus of this paper is the smoothing of the min-sum-
min problem engendered by the modeling of the clustering problem.
In a sense, the process whereby this is achieved is an extension
of a smoothing scheme, called hyperbolic smoothing, presented in
Santos [17] for nondifferentiable problems in general, in Chaves [18]
for the min–max problem and, more recently, in Xavier and Oliveira
[19] for the covering of plane domains by circles. This technique was
developed through an adaptation of the hyperbolic penalty method
originally introduced by Xavier [20].

By smoothing we fundamentally mean the substitution of an in-
trinsically nondifferentiable two-level problem by a C∞ differen-
tiable single-level alternative. This is achieved through the solution
of a sequence of differentiable subproblems which gradually ap-
proaches the original problem. In the present application, each sub-
problem, by using the implicit function theorem, can be transformed
into a low dimension unconstrained one, which, owing to its being
indefinitely differentiable, can be comfortably solved by using the
most powerful and efficient algorithms, such as conjugate gradient,
quasi-Newton or Newton methods.

Although this paper considers the particular MSSC problem, it
must be emphasized that the proposed methodology, hyperbolic
smoothing, can be used for solving other clustering problem formu-
lations as well.

This work is organized in the following way. A step-by-step def-
inition of the clustering problem, directly connected to the presen-
tation of the proposed hyperbolic smoothing approach, is presented
in the next section. The new methodology is described in Section 3.
The algorithm and the illustrative computational results are pre-
sented in Sections 4 and 5. Brief conclusions are drawn in Section 5.

2. The clustering problem as a min-sum-min problem

Let S={s1, . . . , sm} denote a set of m patterns or observations from
an Euclidean n-space to be clustered into a given number q of disjoint
clusters.

To formulate the original clustering problem as a min-sum-min
problem, we proceed as follows. Let xi, i=1, . . . , q be the centroids of
the clusters, where each xi ∈ Rn. The set of these centroid coordinates
will be represented by X ∈ Rnq. Given a point sj of S, we initially
calculate the distance from sj to the center in X that is nearest. This
is given by

zj = min
xi∈X

‖sj − xi‖2. (1)

The most frequent measurement of the quality of a clustering
associated to a specific position of q centroids is provided by the
sum-of-squares of these distances

D(X) =
m∑
j=1

z2j . (2)

The optimal placing of the centroids must provide the best quality
of this measurement. Therefore, if X∗ denotes an optimal placement,
then the problem is

X∗ = argmin
X∈Rnq

D(X), (3)

where X is the set of all placements of the q centroids. Using (1)–(3),
we finally arrive at

X∗ = argmin
X∈Rnq

m∑
j=1

min
xi∈X

‖sj − xi‖22. (4)

3. Transforming the problem

Problem (4) above can be formulated equivalently as

minimize
m∑
j=1

z2j

subject to zj = min
i=1,. . .,q

‖sj − xi‖2, j = 1, . . . ,m. (5)

Considering its definition, each zj must necessarily satisfy the
following set of inequalities:

zj − ‖sj − xi‖2 �0, i = 1, . . . , q. (6)

Substituting these inequalities for the equality constraints of
problem (5), the relaxed problem becomes

minimize
m∑
j=1

z2j

subject to zj − ‖sj − xi‖2 �0, j = 1, . . . ,m, i = 1, . . . , q. (7)

Since the variables zj are not bounded from below, the optimum
solution of the relaxed problem will be zj =0, j=1, . . . ,m. In order to
obtain the desired equivalence, we must, therefore, modify problem
(7).We do so by first letting�(y) denotemax{0, y} and then observing
that, from the set of inequalities in (7), it follows that

q∑
i=1

�(zj − ‖sj − xi‖2) = 0, j = 1, . . . ,m. (8)

For fixed j and assuming d1< · · ·<dq with di = ‖sj − xi‖2, Fig. 1
illustrates the first three summands of (8) as a function of zj.

Using (8) in place of the set of inequality constraints in (7), we
would obtain an equivalent problem maintaining the undesirable
property that zj, j = 1, . . . ,m still has no lower bound. Considering,
however, that the objective function of problem (7) will force each
zj, j= 1, . . . ,m, downward, we can think of bounding the latter vari-
ables from below by considering “>” in place of “=” in (8) and con-
sidering the resulting “non-canonical” problem

minimize
m∑
j=1

z2j

subject to
q∑

i=1

�(zj − ‖sj − xi‖2)>0, j = 1, . . . ,m. (9)
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Fig. 1. Summands in (8).
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