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We consider brightness/contrast-invariant and rotation-discriminating template matching that searches
an image to analyze A for a query image Q. We propose to use the complex coefficients of the discrete
Fourier transform of the radial projections to compute new rotation-invariant local features. These co-
efficients can be efficiently obtained via FFT. We classify templates in “stable” and “unstable” ones and
argue that any local feature-based template matching may fail to find unstable templates. We extract
several stable sub-templates of Q and find them in A by comparing the features. The matchings of the
sub-templates are combined using the Hough transform. As the features of A are computed only once, the
algorithm can find quickly many different sub-templates in A, and it is suitable for finding many query
images in A, multi-scale searching and partial occlusion-robust template matching.
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1. Introduction
1.1. The problem

In this paper, we consider the rotation-discriminating and
brightness/contrast-invariant template matching problem, where
the algorithm must search a grayscale image to analyze A for a
query image Q. A template matching is rotation-invariant if it can
find rotated instances of Q in A and is rotation-discriminating if it
determines the rotation angle of Q for each matching. We define
that two images x and y are equivalent under brightness/contrast
variation if there are contrast correction factor > 0 and brightness
correction factor y such that y = fx+71, where 1 is the matrix of 1’s.

In the literature, there are many techniques to solve this prob-
lem. The most obvious solution is the “brute-force” algorithm. It
makes a series of conventional brightness/contrast-invariant tem-
plate matchings between Q rotated by many different angles and A.
Conventional brightness/contrast-invariant template matching usu-
ally uses the normalized cross-correlation (NCC). Computation of
NCC can be accelerated using fast Fourier transform (FFT) and in-
tegral images [1] or bounded partial correlation [2]. However, even
using fast NCC, the brute-force rotation-invariant algorithm is slow
because fast NCC must be applied repeatedly for many angles.
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Some techniques solve rotation-invariant template matching us-
ing previous segmentation/binarization, for example [3,4]. Given a
grayscale image to analyze A, they first convert it into a binary image
using some segmentation/thresholding algorithm. Then, they sep-
arate each connected component from the background. Once the
shape is segmented, they obtain scale-invariance by normalizing the
shape’s size. Next, they compute some rotation-invariant features for
each component. These features are compared with the template’s
features. The most commonly used rotation-invariant features in-
clude Hu's seven moments [5] and Zernike moments [6]. Unfortu-
nately, in many practical cases, images Q and A cannot be converted
into binary images and thus this method cannot be applied.

Ullah and Kaneko use local gradient orientation histogram to ob-
tain rotation-discriminating template matching [7]. Marimon and
Ebrahimi present a much faster technique that also uses gradient
orientation histogram [8]. The speedup is mainly due to the use of
integral histograms. The gradient orientation histograms are not in-
trinsically rotation-invariant and a “circular shifting” is necessary to
find the best matchings.

The recently developed matching algorithms based on scale and
rotation-invariant key-points, like SIFT [9] and GLOH [10], present
very spectacular computer performance together with true scale-
invariance. These algorithms are particularly fit for finding query
images with rich textures. However, they can fail to find some simple
shapes with little grayscale variations.

Many other techniques use circular projections (also called ring
projections) for the rotation-invariant template matching, for exam-
ple [11-13]. The underlying idea of these techniques is that features
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computed over circular or annular regions are intrinsically rotation-
invariant. The circular projection can be followed by radial projec-
tion to obtain scale and rotation-discriminating template matching
[14]. This technique can be drastically accelerated using dedicated
hardware, like FPGA (field programmable gate array) [15]. How-
ever, these techniques are slow in conventional computers, because
circular and radial projections are time-consuming processes in
non-parallel computers.

1.2. The outline of the algorithm

Choi and Kim [16] have proposed an interesting approach to
accelerate circular projection-based rotation-invariant template
matching. Their method computes circular projections for each
pixel (x,y) in A (that is, the mean grayscales of the circular rings
centered at (x,y)) forming a one-dimensional vector C(A(x,y)). The
circular projection reduces the 2-D information of the neighborhood
of A(x,y) into a one-dimensional rotation-invariant vector. To reduce
even more the data, the method computes the first low-frequency
complex Fourier coefficients cq, ¢3,... of C(A(x,y)), and uses them as
rotation-invariant features. Actually, this technique computes the
Fourier coefficients directly, without explicitly computing the cir-
cular projections, by convolving A with appropriate kernels via FFT.
The features of Q are compared with the features of each pixel A(x,y)
to select the pixels candidate for the matching. A secondary filter
based on the rotation-invariant Zernike moments is used to further
test the candidate pixels. Rotation-dependent features cannot be
used in this test because circular projections do not discriminate
the rotation angle.

We propose to improve Choi and Kim’s algorithm by using new
rotation-invariant and rotation-discriminating features derived from
radial projection, together with the circular features. In order to
provide a short name to the new algorithm, we will call it “Forapro”
template matching (Fourier coefficients of radial projections). We
compute, for each pixel (x,y) in A, the mean grayscales of the radial
lines centered at (x,y), forming a one-dimensional vector of radial
projections R(A(x,y)). Then, we compute the first low-frequency com-
plex inverse Fourier coefficients rq, r2,... of R(A(x,y)). Actually, we
do not compute the radial projections, but the Fourier coefficients
directly. Convolutions in the frequency domain are used to com-
pute quickly the Fourier coefficients, employing appropriate kernels
and FFT. Using special instruction sets, like MMX (multi-media ex-
tensions) or SSE (streaming SIMD extensions), available in most of
the nowadays processors, FFT can be computed 5-20 times faster
than good conventional software implementations. Differently from
the circular case, the radial coefficients are not intrinsically rotation-
invariant. However, it is possible to derive many rotation-invariant
features and one rotation-discriminating feature from the radial co-
efficients.

We show experimentally that the rotation-invariant radial fea-
tures are more adequate for finding templates than circular ones.
However, the maximal accuracy is obtained by using both the ra-
dial and circular features. We classify query images in “stable” and
“unstable” ones and show that any local feature-based template
matching can fail when searching for unstable query images. Thus,
we extract one or more stable circular sub-templates Ty, ..., Ty C Q,
find them in A, and test for false positive errors using Hough trans-
form or NCC. This secondary test is essential, because any feature-
based template matching reduces the original 2-D information into
a set of features, and consequently many non-equivalent templates
may be mapped into the same features, producing false positive
errors.

Template matchings based on pre-computed rotation- and
brightness/contrast-invariant features are advantageous principally
when the algorithm must search an image A for a large number

of templates. In this case, the vector of rotation-invariant features
vf(A(x,y)) is computed only once for each pixel A(x,y). Then, each
template T; can be found quickly in A by computing the vec-
tor of features vf(Ti(x0,¥0)) at the central pixel (xo,y,) of T; and
comparing it with v¢(A(x,y)). If the distance is below some thresh-
old, then the neighborhood of A(x,y) is “similar” (in rotation- and
brightness/contrast-invariant sense) to the template image T; and
(x,y) is considered a candidate for the matching. This property makes
our algorithm suitable for: finding many different query images
in A; multi-scale searching and partial occlusion-robust template
matching.

Our compiled programs and some test images are available at
www.lps.usp.br/~hae/software/forapro. Note that these programs
are intended only for testing the ideas developed in this paper, and
thus many parameters were purposely left to be set by hand.

The remainder of the paper is organized as follows: Section 2
presents the new features and the concept “stability”; Section 3
presents the new template matching algorithms; Section 4 presents
experimental results; and Section 5 presents our conclusions.

2. New features
2.1. Radial IDFT coefficients

~ Given a grayscale image A, let us define the radial projection
R%(A(x,y)) as the average grayscale of the pixels of A located on the
radial line with one vertex at (x,y), length / and inclination o:

- 1 % .

Ri(AY) = 5 /0 A(x+ t cos(x),y + t sin(o))dt. 1)
In practice, a sum must replace the integral, because digital images
are spatially discrete. The vector of M discrete radial projections at
pixel A(x,y) with radius A can be obtained by varying the angle «:
0=m<M. )

A(xy ym] = 2nm/M(A(X ),

Figs. 1(b) and 2(a) depict M = 36 radial projections at the central
pixel of Fig. 1(a).

Vector of radial projections R A, )[m] characterizes the neighbor-
hood of A(x,y) of radius A. If A rotates, then this vector shifts cir-
cularly. This property is illustrated in Fig. 2, the vector of radial
projections of Fig. 1(a). The k-th Fourier coefficient of a vector of
radial projections R is (we omit indices A(x,y) and A)

M-1
r[k] = > R[m]exp(—j2nkm/M),

m=0

0=<k<M. 3)

The Fourier coefficients of a vector of radial projections can be com-
puted directly convolving A with an appropriate kernel K, without ex-
plicitly calculating the radial projections. Fig. 3(a) depicts the “sparse
DFT kernel” K (with M = 8 angles) such that the convolution A x K
yields the first Fourier coefficient of the radial projections (where
K(x,y) = K(—x, —y) is the double reflection of K):

(AxK)(x,y)= ZZquKx Dy —q)

=ZZAp,qu—x,q—y). (4)
P q
It is well known that the convolution A % K can be computed by
multiplications in the frequency domain:
AxK < AK, (5)

where A and K are respectively the discrete Fourier transforms of A
and K.
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