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Identification of centers of circulating and spiraling vector fields, sources and sinks are important in many
applications. Tropical cyclone tracking, rotating object identification, analysis of motion video and move-
ment of fluids are but some examples. In this paper, we introduce a method for finding the centers of cir-
culating and spiraling vector field patterns. It can handle vector fields with multiple centers and is robust
against noise. We provide a theoretical analysis on the validity of our method, and application examples
in the fields of multimedia processing and meteorological computing to demonstrate its practical use.
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1. Introduction

Spiral, circular, or elliptical 2D vector fields, as well as sources
and sinks, are encountered in many applications. For example, in
multimedia, circular and elliptical motion fields are created by mo-
tion compensated prediction [1] of rotating objects [2] or wipe scene
changes [3] in video sequences. In meteorology, motion vector fields
constructed from satellite or radar images [4–6] show circulating
or spiraling structures of tropical cyclones (TCs), pressure systems
and tornadoes [7]. Rotational vector fields are studied in develop-
ing rotating components of electrical appliances such as hair dryers,
washing machines, and fans in industry. Orientation fields which
show circulating or spiraling patterns also draw attention to com-
puter vision researchers [8–11]. Location of the centers of these 2D
vector fields is important, as it provides useful information of the
field structure. In [2], centers of rotating objects in video sequences
are found to help object segmentation and tracking. To meteorol-
ogists, these 2D vector fields are analyzed to study cloud or radar
echo movements [12,13], locate centers of TCs [7,14–16] and torna-
does. Additional applications also arise in aerodynamics [17], fluid
mechanics, and medical imaging.

Straightforward as it may seem, locating the centers of rotating
fields is practically challenging as real-life vector fields are seldom
perfect. They are often incomplete, distorted, or noisy. Robust meth-
ods tolerant to noise are thus needed. In this paper, we introduce a
practical and flexible method for finding centers of circulating and
spiraling vector fields. It not only allows handling of vector fieldswith
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multiple centers, it is also robust against noise. We compare our
method with common vector field pattern matching and alge-
braic analysis approaches, and give suggestions on the choice of
parameters.

The paper is organized as follows. We first review the exist-
ing methods in the literature in Section 2. In Section 3, a mathe-
matical model of circulating and spiraling vector field patterns and
the method for identifying their centers are introduced. The exper-
imental setup for evaluating the efficiency and effectiveness of the
proposed method against common approaches is then described in
Section 4. In Sections 5 and 6, we show the soundness of our algo-
rithm and its robustness against noise using experiments on syn-
thetic vector fields. Efficiency issues are then discussed in Section 7.
The practicality of the method in handling fields with different scales
and noises is demonstrated in Sections 8 and 9 using examples in
multimedia video processing and meteorological computing. The ef-
fect of the parameters, and the limitations of the algorithm are dis-
cussed in Section 10, where we also proposemethods to handle these
limitations. Finally, a summary in Section 11 concludes the paper.

2. Related work

The simplest method to identify the centers of a circulating or
swirling vector field F is to locate regions with high magnitude of
vorticity, ∇ × F, which represents the amount of local rotation. To
identify sources or sinks, the divergence, ∇ ·F, can be used. An adap-
tation of the method includes circulation analysis, in which the vor-
ticity of an area is found by the equation

∫ ∫
R(∇×F ·k) dxdy=∮

CF ·dr,
where R is a closed bounded region on the x–y plane whose bound-
ary is C. However, such simplistic methods are ineffective on incom-
plete or noisy fields.
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Table 1
Summary of related work.

Vector operations Idea: Given a vector field F, the location with high magnitude of vorticity, ∇ × F, is the center of
circulating or swirling fields. Location of sources or sinks can be identified by the divergence, ∇ · F
Circulation analysis: Find regions R bounded by C with high values of

∫ ∫
R(∇ × F · k) dxdy = ∮

CF · dr
Vector field pattern matching Reference Idea: The center is the location that best fits a template from the input vector field under a similarity

measure
[18] Correlation between the defined templates (Center, Saddle, and Node) and the vector field is done

to find the location with a similarity score that exceeds a predefined threshold
[20] Convolution between the defined templates (left- and right-handed swirl flows, converging flow,

diverging flow, vortices, and parallel flows) and the vector field is done to create a tensor field.
The location with the largest eigenvalue is the answer

[19] Clifford convolution is done to find the orientation of the defined templates, followed by scalar
correlation on the rotated mask to locate the maxima

Algebraic analysis Reference Idea: According to the dynamical system properties of the fields, singularities are identified. The
strongest singularities that is classified as “center” is regarded as the answer

[21] Vector field is decomposed into irrotational and solenoidal components through discrete
Helmholtz–Hodge Decomposition. The extrema of the corresponding potential function are the loca-
tions of vortices, sources or sinks

[22,23] Vector field is decomposed into irrotational and solenoidal components through 2D Fourier transform.
The extrema of the corresponding squared potential and stream function are the locations of critical
points, which are then classified by checking the eigenvalues of the Jacobian matrix

[8] An isotangent-based algorithm is used to estimate flow parameters for critical point classification
[9,10] Linear estimator is used to estimate the phase portraits. Curl, divergence and deformation are used

for critical point classification
[24] Flow orientation, strength and phase portrait characteristics are combined to form a measure for

critical point identification
Structural analysis Reference Idea: A voting technique is employed. The center of the flow is the point covered by the largest

number of sectors generated by rotated vectors of the motion vector field
[2] Each vector is rotated by �/2 with a sector span to offset the rounding errors of motion estimation

algorithms. The method is designed to handle a single circular field
[25] Each vector is rotated by � with a sector span � to handle vector fields under orthographic projection

Previous work that address the issue mainly solve the problem
using two approaches: (1) vector field pattern matching, and (2) ex-
amination of dynamical system properties of vector fields using alge-
braic analysis. A summary of previous work on center identification
from vector fields is given in Table 1.

The idea of vector field pattern matching algorithms is to take
the center as the location of the input vector field that best fits a
template under some similarity measure, such as sine metric [18] or
convolution [19,20].

In [18], three 2D templates, “Center”, “Saddle” and “Node” are
defined. The similarity measure used is an absolute sine metric. The
location with a similarity score that exceeds a predefined threshold
is regarded as the answer. A method for doing quality check of the
answers is also proposed in the paper.

As another example, in [20], a set of templates, including left-
and right-handed swirl flows, converging flow, diverging flow,
vortices, and parallel flows, are defined for 3D flow characteriza-
tion. These templates and their rotated counterparts are convolved
with the vector field to obtain a similarity score. The linear com-
bination of the template similarity scores creates a tensor field,
which describes the local properties of the vector field. The lo-
cation with the largest eigenvalue represents the output, and the
corresponding eigenvector indicates the symmetry axis of the
structure.

Another similar approach for 3D flow characterization is pro-
posed in [19], where Clifford convolution is first used to find the
orientation of the templates. The scalar correlation between the ro-
tated templates and the field is then calculated to locate the maxima,
which are taken as answers.

Methods employing vector field pattern matching approach are
flexible as different templates can be defined for finding different
flow patterns. However, the size and the pattern of templates have
to be similar to the patterns in the vector field.

Another approach for finding centers of rotating vector fields is to
examine the dynamical system properties of the fields by algebraic
analysis. First, the phase portrait of the vector field is computed.

Next, critical points are located and classified. Besides centers, vector
field singularities such as swirls, vortices, sources and sinks can also
be identified.

To estimate the flow parameters for phase portrait computa-
tion, the vector field can first be decomposed into solenoidal and
irrotational components through discrete Helmholtz–Hodge De-
composition [21] or 2D Fourier transformation [22,23]. From these
components, the corresponding potential functions are derived, and
the local extrema are the locations of critical points. Refs. [22,23]
further filtered the less significant singularities by an iterative al-
gorithm with Bhattacharyya distance and Rankine model as the
constraints. The singularities in the filtered answer set are then
classified according to the eigenvalues of the Jacobian matrix with
respect to the position of a critical point.

Another set of work based on phase portrait of the flow is devel-
oped by Rao and Jain [8–11]. The authors proposed an isotangent-
based algorithm in [8] to locate critical points on oriented textures.
An isotangent line, which is a straight line proven to pass through
a critical point [8], is fitted to each point with the same flow orien-
tation. Least median of squares estimators are then applied to find
the point that is closest to all the isotangent lines, and reject those
lines that are outliers. The accepted isotangent lines are then used
to estimate the parameter set for phase portrait classification of the
identified critical point.

Another weighted least square error estimator is proposed in
[9,10] for the estimation of phase portraits. The local properties of the
vector field, including curl, divergence, and deformation are checked
for flow pattern classification. These methods are used in applica-
tions such as semiconductor wafer inspection, and lumber defect
characterization [11].

An alternative way for dynamical system estimation is proposed
in [24], in which the flow field orientation, strength, and phase por-
trait characteristics are combined to form ameasure for critical point
identification. Potential critical points are then accepted or rejected
by estimating the local flow field characteristics, such as isocline
properties [24].
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