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a b s t r a c t

In this paper, we present a simple and effective approach to the image parsing (or labeling image regions)

problem. Inspired by sparse representation techniques for super-resolution, we convert the image parsing

problem into a superpixel-wise sparse representation problem with coupled dictionaries related to features

and likelihoods. This algorithm works by image-level classification with global image descriptors, followed

by sparse representation based likelihood estimation with local features. Finally, Markov random field (MRF)

optimization is applied to incorporate neighborhood context. Experimental results on the SIFTflow dataset

support the use of our approach for solving the task of image parsing. The advantage of the proposed algo-

rithm is that it can estimate likelihoods from a small set of bases (dictionary) whereas recent nonparametric

scene parsing algorithms need features and labels of whole datasets to compute likelihoods. To our knowl-

edge, this is the first approach that utilizes sparse representation to superpixel-based image parsing.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Scene understanding at many different levels has been researched

over the past few decades. At the image-level, we may consider the

general category of the scene, e.g., coast, forest, street with global im-

age descriptors [1,13]. Scene parsing is a pixel-level problem which

assigns a semantic label (e.g., sky, cars, buildings) to every pixel

in an image. Although it is a challenging problem, research in this

field has been active due to its various applications, e.g., image edit-

ing, autonomous robots, surveillance system. Researchers have pro-

posed a lot of approaches for scene parsing. Due to the complicated

nature of the problem, these approaches have different choice of

features to describe, regions to localize, relationships to incorporate

context and optimization techniques to solve. Typically, Conditional

Random Fields (CRFs) based approaches are successfully used to solve

the scene parsing problem [7,9] and even combined with object de-

tection algorithms [10,22]. Deep learning techniques are also used to

obtain feature maps with a trained neural network [4]. Recently, non-

parametric approaches have been researched as the sizes of datasets

and the number of labels have increased [12,15]. These are data-

driven methods that utilize nearest neighbor (NN) search techniques.

With the simplicity and effectivity of nonparametric approaches, re-

searchers have proposed advanced techniques.

[12] used “SIFT flow” which estimates dense correspondences be-

tween two images. Given a query image, the algorithm first finds
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similar images within annotated dataset, i.e. image retrieval, and es-

timates “SIFT flow” from the query image to each similar image. Then,

they “transfer” labels from the dataset to the query image by using es-

timated flow. [15] proposed the “SuperParsing” algorithm which an-

alyzes superpixels instead of pixels since pixelwise-correspondence

estimation is complex and computationally expensive. Each super-

pixel is labeled by using NN superpixels within retrieved images, then

using MRF inference to incorporate neighborhood context. More re-

cently, they extended the SuperParsing algorithm with per-exemplar

detection [16]. [14] proposed a nonparametric based approach that

uses a locally-adaptive NN technique and refines the retrieval set by

considering spatial pyramids of predicted labels. [20] proposed non-

parametric scene parsing algorithm with attention to rare classes;

this algorithm achieved state-of-the-art performance.

Example-based super-resolution algorithms have similar nature

to those of nonparametric scene parsing algorithms. Both start with

features of an input query image (e.g.: low-resolution image patches

for super-resolution, local features of superpixels for nonparametric

scene parsing) and find similar (e.g.: NNs) features from datasets. Fea-

tures from datasets have their coupled parts (e.g.: high-resolution im-

age patches for super-resolution, ground truth label information of

superpixels for nonparametric scene parsing) and both use the infor-

mation of coupled parts with similarities found in feature domain.

Recently, sparse reconstruction based super-resolution algorithms

have been proposed instead of using whole dataset. For example, [21]

proposed a joint dictionary learning model that uses concatenated

high resolution (HR)/low resolution(LR) image features with an as-

sumption that LR image patches have the same sparse representa-

tions as their HR versions do. [19], [6] and [8] further improved Yang’s
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Fig. 1. Overall procedure.

joint dictionary learning scheme, and these methods have been suc-

cessfully applied to super-resolution.

In this paper, we make the following contributions: (i) We pro-

pose a novel image parsing scheme based on sparse representation,

and this is the first approach that utilizes sparse representation to the

features of superpixels; (ii) We adopt a boosting concept approach to

refine the likelihood for each superpixel; (iii) We reduce the data ca-

pacity comparing with the nonparametric scene parsing algorithms

although the proposed algorithm has similar nature to that of non-

parametric algorithms based on NN.

Fig. 1 shows the overall procedure of the proposed algorithm. The

input is a still image. In order to select appropriate dictionary which

is suitable to describe the current input image, the system extracts a

global image descriptor first. Then a support vector machine (SVM) is

used with the global image descriptor (Section 2.1). To extract local

features, superpixels are generated using a graph-based segmenta-

tion algorithm (Section 2.2). Color, texture, location, shape of super-

pixels are used to obtain likelihoods by using sparse representation

(Section 2.3). After obtaining likelihoods, superpixel-wise SVM score

is used to refine them (Section 2.4). Markov random field (MRF) anal-

ysis is performed to incorporate neighborhood context (Section 2.5).

These processes yield label information for each superpixel.

2. Approach

2.1. Dictionary selection

In nonparametric scene parsing approaches, image retrieval

which finds images that are similar to the input image is an im-

portant and critical step since it determines the label candidates to

parse the input image later. Because we are going to use sparse rep-

resentation which requires trained dictionaries, this retrieval step is

unsuitable for our case. Instead of image retrieval, we categorized

training dataset images into several categories (e.g.: coast, street, for-

est) and the input image is classified into one of those categories.

We use a variant of dense SIFT descriptors named PHOW [1] to de-

scribe the global image and train SVM with pre-defined image cat-

egories. For an image Im, S(m) ∈ 1, 2, . . . , ND and DS(m) indicate the

selected image category and corresponding dictionary, with ND as

the number of dictionaries equal to the number of image categories,

respectively.

2.2. Local feature extraction

Although we want to assign semantic labels to every pixel of the

input image, a single pixel alone does not contain sufficient informa-

tion for labeling. Thus we consider larger regions, i.e. superpixels and

features from them. For an image, we extract superpixels with a fast

graph-based segmentation algorithm [5]. Similar to [15], we repre-

sent each superpixel as a 794-dimensional vector which consists of

appearances, color, texture, location and shape features. We compute

color histograms by quantizing each R, G, B color space into 16 bins

(48 dimensions). To represent texture information, a Histogram of

maximum responses for 15 derivatives of oriented Gaussian filtered

results (15 dimensions), a histogram of dense SIFT descriptor (dSIFT)

for each superpixel (100 dimensions), a SIFT histogram of dSIFT for

each dilated superpixel (100 dimensions) and four dSIFT histograms

of left, right, top, and bottom boundary regions for each superpixel

(4 × 100 dimensions) are used. We also compute a location histogram

by quantizing the (x, y)-locations into a 8 × 8 grid (64 dimensions)

and the top height of each superpixel relative to the image height

(1 dimension). The shape of each superpixel is represented using its

bounding box. We compute 8 × 8 mask of the superpixel over its

bounding box (64 dimensions) and width/height of the bounding box

relative to the image width and height (2 dimensions).

2.3. Likelihood estimation

The output of the scene parsing for an image Im is a labeling L =
(l1, l2, . . . , lNs

) which assigns a unique label li ∈ 1, 2, . . . , NL to each

superpixel si, where NL and Ns are the total number of the semantic

labels and superpixels respectively in an image.

2.3.1. Label transfer via sparse representation

Let PLT(ai|li) be the appearance likelihood where LT denotes label

transfer and ai is the appearance feature vector described above. Con-

ceptual illustration of likelihood estimation is depicted in Fig. 2. We

compute PLT(ai|li) with a weighted linear combination of a few bases,

i.e. sparse representation.

�PLT (ai|li) =

⎛
⎜⎜⎝

PLT (ai|li = 1)
PLT (ai|li = 2)

...
PLT (ai|li = NL)

⎞
⎟⎟⎠ = Dl

S(m)zi (1)

where Dl
S(m)

denotes the selected dictionary for the likelihood part

and zi is sparse coefficients estimated from

min
{zi}Ns

i=1

Ns∑
i=1

‖ai − Da
S(m)zi‖2

2 + γ ‖zi‖1 (2)

and Da
S(m)

is the selected dictionary for appearance part which is cou-

pled with Dl
S(m)

. Since S(m) indicates the selected image category
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