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a b s t r a c t

In this paper, we propose to improve the registration accuracy by pre-estimation and compensation. The idea

is motivated by the observation of some registration algorithms that, for a given algorithm, the accuracies of

the translation-only model are much higher than those of other complex models. Therefore, it seems that, if

pre-estimation and compensation are performed and the residual model is close to translation only, the fol-

lowing estimation could achieve improved accuracy. To verify the idea, we implement two algorithms in the

rotation-translation (RT) model. We use the Fourier–Mellin transform to isolate and convert the rotation into

translation, then apply the classical Lucas–Kanade algorithm to obtain the high accuracy rotation estimation.

In the following, the one takes account into the incomplete rotation compensation, and use the Keren algo-

rithm for the residual model; the other assumes the rotation compensation is complete, and uses the second

Lucas–Kanade algorithm. Finally, we perform simulations using typical test images, and the results confirm

the accuracy improvement.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Image registration is a fundamental preprocessing component in

many image processing applications, such as super-resolution, image

mosaicing, image fusion, and computer vision [26]. Among several

evaluation metrics, accuracy may be the most important one because

it can largely determine the performance of the following processing

components. For instance, in satellite image mosaicing [20], one pixel

in the image data may correspond to a ground block ranging from

several meters to tens of meters on the Earth, e.g., the spatial resolu-

tion of a Landsat-8 image is about 30 m; therefore, pixel-level regis-

tration of such images will provide ± 15 m resolution, while 0.1 pixel

registration can provide ± 1.5 m resolution. Besides, for the success

of super-resolution reconstruction, accurate registration is even more

critical [16], and otherwise super-resolution using inaccurately regis-

tered images is no better than interpolation of a single image.

The idea of this paper is mainly motivated by the following obser-

vation. In the experimental results of some registration algorithms,

it can be observed that, if we consider a given algorithm and com-

pare the estimation accuracies between the results under different

transformation models, the accuracies under translation-only model

are much higher than those under other complex models, e.g., the
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rotation-translation (RT) model (the detailed can refer to Section 2).

This hints that, for the RT model, if the rotation could be firstly ac-

curately estimated and well compensated, the translation would be

estimated with improved accuracy, and even if the rotation is not

completely compensated, since the residual rotation is quite small,

it is still expected to achieve accuracy improved estimation under the

residual RT model. We assume that this observation and hypothesis

is generally true, and this is the main start point of this paper.

To verify the idea, we implement it in the RT model. In this case,

the critical task is the high accuracy estimation of rotation. To do this,

we choose to isolate the rotation out of the RT model and then obtain

its high accuracy estimation. We use the Fourier–Mellin transform,

which can be regarded as performing the Fourier transform followed

by converting the magnitude spectrum into the log-polar coordinate

system. According to the properties of the Fourier transform, only

the rotation factor is left in the magnitude, and the following log-

polar conversion can further convert the rotation factor into transla-

tion. Then, we need an “accurate enough” algorithm to perform the

high accuracy estimation, and we choose the classical Lucas–Kanade

algorithm, which is based on linear Taylor approximation, thus can

achieve sub-pixel estimation without need of upsampling interpola-

tion. After the rotation compensation, we perform the residual esti-

mation. We implement two algorithms, the one assumes the residual

model as translation-only, and the other treats the residual model

as RT but the residual rotation is quite small; as the motivation, the

translation accuracies in both the two are expected to be improved

than the traditional approach.
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Being a feasible isolation technique, the Fourier–Mellin trans-

form has been successfully used in the extension of phase cor-

relation to the rotation-scaling-translation model [6,10,18]. This

two-stage strategy provides a framework for image registration. For

example, Ho et al. [11] proposed to apply Argyriou’s sub-pixel exten-

sion of phase correlation [2] in this framework, and Tzimiropoulos

et al. [21] proposed to implement the normalized gradient correlation

in this framework. We also implement in this framework, thus the

implementations are formally similar to the methods above. How-

ever, we aim to achieve the rotation estimation as accurate as possi-

ble in the Fourier–Mellin domain, while others employ the Fourier–

Mellin transform and then perform two common successive estima-

tions. This is a subtle difference between ours and others.

As a classical gradient-based algorithm, the Lucas–Kanade algo-

rithm can obtain high accuracy sub-pixel estimation directly, by con-

trast, most algorithms achieve sub-pixel accuracy by interpolation

[20,24,25]. Since the seminal work of Lucas and Kanade [13], it has

been extended into more general models [4], in which a notable ex-

tension was proposed by Keren et al. [12]. Moreover, it has been

active till now, and new variants were presented in recent years

[1,7,14,17,19]. Although the Lucas–Kanade algorithm has been pro-

posed for more than 30 years, it can still keep the state-of-the-art

sub-pixel accuracy. In this paper, we use the classical Lucas–kanade

algorithm for “accurate enough” estimation.

In addition to the accuracy improvement, owing to the two-stage

strategy, the proposed algorithms can broaden the rotation range. On

the other hand, since the Lucas–Kanade algorithm is used to estimate

the rotation in the Fourier–Mellin domain, the image magnitude fea-

ture may affect the Lucas–Kanade performance. To evaluate the algo-

rithms, test images with typical magnitude features are used in the

experiments, and the results verify the motivation.

The remainder of the paper is organized as follows. In Section 2,

the motivation is introduced to clearly express the idea. Section 3 de-

scribes the classical Lucas–Kanade algorithm, the Keren algorithm,

and the Fourier–Mellin transform. Section 4 presents the implemen-

tations in detail, and Section 5 gives results and discussion. Finally,

Section 6 summarizes this paper.

2. Motivation

To clearly express the idea, we introduce the motivation here

as a separate section. We will cite experimental data from Ref.

[23], in which Vandewalle et al. presented a high accuracy regis-

tration algorithm for super-resolution in a two-stage fashion. They

also used the magnitude spectra, but, instead of the log-polar trans-

form, they performed radial integral to convert the magnitudes

into one-dimensional functions, and determined the rotation by

one-dimensional correlation; after rotation compensation, they per-

formed least squares on the phase difference plane to obtain the

translation estimation.

To test their algorithm, they compared with others under the RT

model and the translation-only model. Since their proposed algo-

rithm, Marcel et al. [15], and Keren et al. [12] are common under the

two models, we prefer to compare the performances of the same al-

gorithm under the two models. Therefore, we extract and rearrange

the data as shown in Table 1, in which μ and σ are the average ab-

solute error and the standard deviation of the error, respectively. To

keep data intact, we cite both the translation (x̂0) and rotation (θ̂0).

Note we do not compare between the algorithms but only concern

the same algorithm under the two models. It is clear that, for all the

three algorithms, the translation accuracies under the translation-

only model (‘T’ in the Table) outperform their own counterparts un-

der the RT model, and especially for Vandewalle’s algorithm, the dif-

ference is dramatic. Furthermore, we notice that the three algorithms

work in different principles. The algorithm by Vandewalle et al. is a

hybrid one as described before, the algorithm by Marcel et al. is an

Table 1

Comparison of the estimation accuracies under the RT model and the trans-

lation model.

Vandewalle et al. Marcel et al. Keren et al.

T RT T RT T RT

x̂0 μ 3.2E-15 0.029 0.3126 1.999 4.1E-3 0.019

σ 3.9E-15 0.038 0.3803 11.522 6.0E-3 0.027

θ̂0 μ – 0.126 – 19.003 – 0.053

σ – 0.191 – 79.086 – 0.071

extension of phase correlation, and the algorithm by Keren et al. is an

extension of classical Lucas–Kanade algorithm. Therefore, since the

three different algorithms exhibit common trends, we assume this

phenomenon is common for general image registration, and propose

the hypothesis in the introduction.

3. Related work

3.1. Classical Lucas–Kanade algorithm

Consider two images f(x) and g(x), where x = [x, y]T, and assume

that the two images are related by the translation-only model:

g(x) = f (x − x0), (1)

where x0 = [x0, y0]T, and x0 and y0 are the horizontal translation and

vertical translation, respectively.

To estimate x̂0 of x0, the classical Lucas–Kanade algorithm aims to

minimize the sum of squared error (SSE) function [13]:

x̂0 = arg min
x0

{E(x0)}

= arg min
x0

{∑
x

[ f (x − x0) − g(x)]
2

}
.

(2)

First, we take the linear approximation of f (x − x0) by Taylor’s

series:

f (x − x0) ≈ f (x) − ∇ f (x)Tx0 (3)

with ∇ f (x) = [ ∂ f
∂x

,
∂ f
∂y

]T.

Then, we compute the partial derivatives of E(x0) with respect to

x0 and set them to zero:

0 = ∂

∂x0

{∑
x

[
f (x) − ∇ f (x)Tx0 − g(x)

]2

}
=

∑
x

2∇ f (x)
[

f (x) − ∇ f (x)Tx0 − g(x)
]
,

(4)

from which we can obtain the estimation:

x̂0 =
[∑

x

∇ f (x)∇ f (x)T

]−1[∑
x

∇ f (x)[ f (x) − g(x)]

]
. (5)

3.2. Keren algorithm

Keren et al. [12] extended the classical Lucas–Kanade algorithm

into the RT model from a special manner, and they performed two

successive Taylor approximations. We define the following RT model:

g(x, y) = f (x cos θ0 − y sin θ0 − x0, x sin θ0 + y cos θ0 − y0). (6)

The first Taylor approximation is performed on sin θ0 and cos θ0

with the first two terms, and the second Taylor approximation is
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