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This paper addresses classification problems in which the class membership of training data are only
partially known. Each learning sample is assumed to consist of a feature vector xi ∈X and an imprecise
and/or uncertain “soft” label mi defined as a Dempster–Shafer basic belief assignment over the set of
classes. This framework thus generalizes many kinds of learning problems including supervised, unsu-
pervised and semi-supervised learning. Here, it is assumed that the feature vectors are generated from
a mixture model. Using the generalized Bayesian theorem, an extension of Bayes' theorem in the belief
function framework, we derive a criterion generalizing the likelihood function. A variant of the expecta-
tion maximization (EM) algorithm, dedicated to the optimization of this criterion is proposed, allowing us
to compute estimates of model parameters. Experimental results demonstrate the ability of this approach
to exploit partial information about class labels.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Machine learning classically deals with two different problems:
supervised learning (classification) and unsupervised learning (clus-
tering). However, in recent years, new paradigms have emerged to
mix these two approaches in order to extend the applicability of
machine learning algorithms.

The paradigm that emerged first is semi-supervised learning [1,2],
where the learning set Xss = {(x1, y1), . . . , (xM , yM),xM+1, . . . ,xN} is
composed of two different parts. In the first part, the true class labels
yi are specified, whereas in the second part only the feature vectors
xi are given. The importance for such problems comes from the fact
that labelled data are often difficult to obtain, while unlabelled ones
are easily available. Using unlabelled data may thus be a means to
enhance the performances of supervised algorithms with low addi-
tional cost. The recent publication of a collected volume [3] shows
the important activity around this issue in themachine learning field.
Recent approaches to semi-supervised learning fall into two main
categories:

• An important class of methods is based on the hypothesis that
the decision boundary should be located in low density areas.
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Methods in this category aim at deriving a regularizer of the con-
ditional log-likelihood, taking into account the unlabelled data to
bias the decision boundary toward low density areas [4,5]. The
transductive support vector machine [6] uses a margin-based cri-
terion to achieve a similar goal. All these methods suffer from the
problem of local maxima, although some relaxation schemes lead
to a convex optimization problem in the case of the transductive
support vector machine [7].
• Other methods are based on the assumption that the high-

dimensional input data lie near a low-dimensional manifold.
Unlabelled data are then useful as they help in estimating this
manifold. Methods relying on the manifold assumption are typi-
cally based on unsupervised dimensionality reduction techniques
such as PCA or kernel-PCA, or on label propagation in a graph [8,9].

Other paradigms have also been proposed to take into account more
sophisticated information on class labels. For example, partially
supervised learning [10–14] deals with constraints on the possible
classes of samples. In this case, the learning set has the following
form Xps={(x1,C1), . . . , (xN ,CN)}, where Ci is a set of possible classes
for learning example i. If all classes are possible, the example is
not labelled. Conversely, the example is perfectly labelled if only
one class is specified (|Ci| = 1). Between these two extreme cases,
this approach may also handle situations where some examples are
known to belong to any subset of classes. In this case, they are con-
sidered as partially or imprecisely labelled. This framework is thus
more general than the semi-supervised learning problem.
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A completely different paradigm is based on the notion of label
noise and assumes that the class labels may be pervaded by ran-
dom errors. In this case, class labels are thus precise, but uncer-
tain. Recent contributions along these lines can by found in Refs.
[15–17]. In the first two papers, a generative model of label noise
is assumed. It is then proposed to model the label noise process by
conditional distributions specifying the probabilities that samples
labelled as belonging to one class, were in fact drawn from another
class. The parameters of such model are then learnt by maximiz-
ing the likelihood of the observations knowing the labels [15] or are
optimized using a classification maximum likelihood approach [16].
A kernelized version of this kind of approach has been proposed in
Refs. [15,18].

The investigations reported in this paper provide a solution to
deal with imprecise and/or uncertain class labels, and can there-
fore be seen as addressing a more general issue than in the above
paradigms. Our approach is based on the theory of belief functions
[19,20], a framework known to be well suited to represent imprecise
and uncertain information. In this paper, we explore its use to repre-
sent knowledge on class membership of learning examples, in order
to extend the partially supervised framework. In this way, both the
uncertainty and the imprecision of class labels may be handled. The
considered training sets are of the form Xiu={(x1,m1), . . . , (xN ,mN)},
where mi is a basic belief assignment (bba), or Dempster–Shafer
mass function [19] encoding our knowledge about the class of
example i. The mi's (hereafter referred to as “soft labels”) may
represent different kinds of knowledge, from precise to imprecise
and from certain to uncertain. Thus, previous problems are special
cases of this general formulation. Other studies have already pro-
posed solutions in which class labels are expressed by possibility
distributions or belief functions [21–24]. These labels are interest-
ing when they are supplied by one or several experts and when
crisp assignments are hard to obtain. In such cases, the elicitation of
experts' opinions regarding the class membership of objects under
consideration, in term of possibility or belief functions, can be of
interest [21,25].

In this article, we present a new approach to solve learning prob-
lems of this type, based on a preliminary study by Vannoorenberghe
and Smets [26,27]. This solution is based on mixture models, and
therefore assumes a generative model for the data. Generative mod-
els have already proved their efficiency in a lot of applications [28].
Their flexibility offers also a good way to benefit from domain spe-
cific knowledge, as shown, for example, in text classification [29].
Finally, the adaptability of the expectation maximization (EM) algo-
rithm, which may easily handle specific constraints, is an advantage
of generative models. Note that the approach introduced in Refs.
[26,30] to apply the EM algorithm to data with soft labels, although
based on strong intuitions, was only imperfectly formalized. It was
not clear, in particular, what was the equivalent of the log-likelihood
function in this case, and if the proposed extension of the EM algo-
rithm converged at all. Precise answers to these questions are pro-
vided here.

This article is organized as follows. Background material on
belief functions and on the estimation of parameters in mixture
models using the EM algorithm will first be recalled in Sections 2
and 3, respectively. The problem of learning from data with soft
labels will then be addressed in Section 4, which constitutes the
core of the paper. A criterion extending the usual likelihood cri-
terion will first be derived in Section 4.1, and a version of the
EM algorithm that optimizes this criterion will be introduced
in Section 4.2. Practical considerations and a general discussion
will be presented in Sections 4.3 and 4.4, respectively. Finally,
simulation results illustrating the advantages of this approach
will be reported in Section 5, and Section 6 will conclude the
paper.

2. Background on belief functions

2.1. Belief functions on a finite frame

The theory of belief functions was introduced by Dempster [31]
and Shafer [19]. The interpretation adopted throughout this paper
will be that of the transferable belief model (TBM) introduced by
Smets [20]. The first building block of belief function theory is the
bba, which models the beliefs held by an agent regarding the actual
value of a given variable taking values in a finite domain (or frame
of discernment) �, based on some body of evidence. A bba m� is a
mapping from 2� to [0, 1] verifying∑
�⊆�

m�(�)= 1. (1)

Each mass m�(�) is interpreted as the part of the agent's belief
allocated to the hypothesis that the variable takes some value in �
[19,20]. The subsets � for which m�(�) >0 are called the focal sets.
A categorical bba has only one focal set. A simple bba has at most two
focal sets, including �. A Bayesian bba is a bba whose focal sets are
singletons. A bba is said to be consonant if its focal sets are nested.

A bba is in one to one correspondence with other representations
of the agent's belief, including the plausibility function defined as

pl�(�)�
∑

�∩��∅
m�(�), ∀� ⊆ �. (2)

The quantity pl�(�) is thus equal to the sum of the basic belief
masses assigned to propositions that are not in contradiction with
�; it corresponds to the maximum degree of support that could be
given to �, if further evidence become available. The plausibility
function associated with a Bayesian bba is a probability measure.
If m� is consonant, then pl� is a possibility measure: it verifies
pl�(� ∪ �)=max(pl�(�), pl�(�)), for all �,� ⊆ �.

2.2. Conditioning and combination

Given two bbas m�
1 ,m�

2 supported by two distinct bodies of evi-

dence, we may build a new bbam�
1 2

= m�
1 m�

2 that corresponds

to the conjunction of these two bodies of evidence as

m�
1 2

(�)�
∑

�1∩�2=�
m�

1 (�1)m
�
2 (�2), ∀� ⊆ �. (3)

This operation is usually referred to as the unnormalized Dempster's
rule, or the TBM conjunctive rule. Any positive mass assigned to the
empty set during the combination process is interpreted as indicat-
ing partial conflict between the two bodies of evidence. If the frame
of discernment is supposed to be exhaustive, this mass is usually re-
allocated to other subsets, leading to the definition of the normalized
Demspter's rule ⊕ defined as

m�
1⊕2(�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if � = ∅,
m�

1 2
(�)

1−m�
1 2

(∅)
if � ⊆ �,��∅, (4)

which is well defined providedm�
1 2

(∅)�1. Note that, ifm�
1 (orm�

2 )

is Bayesian, then m�
1⊕2(�) is also Bayesian.

The combination of a bba m� with a categorical bba focused on
� ⊆ � using the TBM conjunctive rule is called (unnormalized) con-
ditioning. The resulting bba is denoted m�(�|�). Probabilistic con-
ditioning is recovered when m� is Bayesian, and normalization is
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