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In recent years, evaluating graph distance has become more and more important in a variety of real
applications and many graph distance measures have been proposed. Among all of those measures,
structure-based graph distance measures have become the research focus due to their independence of
the definition of cost functions. However, existing structure-based graph distance measures have low
degree of precision because only node and edge information of graphs are employed in these measures.
To improve the precision of graph distance measures, we define substructure abundance vector (SAV) to
capture more substructure information of a graph. Furthermore, based on SAV, we propose unified graph
distance measures which are generalization of the existing structure-based graph distance measures. In
general, the unified graph distance measures can evaluate graph distance in much finer grain. We also
show that unified graph distance measures based on occurrence mapping and some of their variants are
metrics. Finally, we apply the unified graph distance metric and its variants to the population evolution
analysis and construct distance graphs of marker networks in three populations, which reflect the single

nucleotide polymorphism (SNP) linkage disequilibrium (LD) differences among these populations.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

As a universal data structure, graph has been widely used to
model complex interaction relations among objects and define con-
cepts. Compared to other data structures such as sequence, tree,
graph is more sophisticated and more general, and consequently
studies on graph have attracted research interest in various disci-
plines.

Many real applications [1-7] need to measure the similarity or
distance between objects represented by graphs. For example, in
computer vision and pattern recognition [2,3], similarity between
unknown graph pattern and model graph pattern must be measured
in the well-known graph matching process. In chemoinformatics
[4-7], similarity searching based on 2D representation of molecular
structure is one of the most common approaches to virtual screen-
ing, where some appropriate measure of inter-molecular structural
similarity is the key of the success of the searching task.

Great efforts have been devoted to studying graph distance mea-
sures in different application domains over the past decades [8]. As
a result, various graph distance measures have been proposed in
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the literatures [9-15]. These graph distance measures can be classi-
fied into three classes: cost-based distance measures, structure-based
distance measures and feature-based distance measures. In Ref. [5],
cost-based distance and structure-based distance are considered as
one class, because it has been proved in Ref. [16] that given certain
cost functions, the structure-based graph distance measures, such
as graph distance measures based upon maximal common subgraph
(MCS) [9],] are equivalent to corresponding edit distance measures
with certain cost functions.

Considering error tolerance or error correcting, cost-based graph
distances [17,18], e.g. graph edit distances, have been proposed,
which are measured by the minimum edit cost to transform one
graph into another. When defining graph edit distance, it is essen-
tial to define appropriate cost function for edit operations, which is
usually based on the domain knowledge. Hence, cost-based graph
distances give users opportunities to integrate domain knowledge
into the definition of graph distance by parameterizing the cost

1 The term ‘MCS’ has been widely used, but it also has brought much confusion
to the existing literatures. Strictly speaking, the graph distance metric proposed in
Ref. [9] is based on maximal common vertex induced subgraph, abbreviated as MCIS,
and some following graph distance metrics are based on maximum common edge
induced graph, abbreviated as MCES. In this paper, to distinguish these two concepts,
we will explicitly use MCIS or MCES, instead of MCS.
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Fig. 1. Three graphs Gy, G>,G3 and two maximal common subgraphs Gi3,Gy3.

function. However, such flexibility also impose a severe limitation
on graph edit distance in that it is difficult to define cost functions
due to the variety of domain knowledge, despite the fact that great
efforts have been dedicated to find the automatic procedures to
infer edit operation costs [19,20]. Another class of graph distance
measures is feature-based measures, which have also been widely
studied in chemoinformatics and bioinformatics. In feature-based
measures, distance or similarity has been measured according to the
feature vectors derived from the chemical or biological structures.
Hence, the effects of the feature-based measures heavily rely on the
definition of the characteristic structures.

Compared to the other two classes of graph distance measures,
structure-based distance measures do not rely on the cost functions
and characteristic structures. In structure-based distance measures,
the common substructure or superstructure has been considered as
the measure of the degree of the similarity between graph patterns.
Recently, some effective algorithms [4] to compute structure-based
graph distance have been available, which further make structure-
based measures, especially those measures based on MCS become
the most popular graph distance measures in recent years.

Although various structure-based graph distance or similarity
measures have been available, many graph pairs in some applica-
tion domains cannot be correctly measured using these measures.
For example, as shown in Fig. 1, given three graphs Gy, G, and Gz,
we need to evaluate the similarity or distance among these graphs.
If MCES-based distance metric, a widely used graph distance metric,
is used, the MCS G1, (between G and G;) and the maximum com-
mon subgraph G;3 (between G and G3) will have the same number
of nodes and edges. Consequently, we can reach the conclusion that
G, is similar to Gy to the same extent as G3 similar to Gj.

However, in the following sections, we will show that Gq3 con-
tains much richer substructure information than G;3. As shown in
Fig. 2, G13 contains some unique substructures, such as triangle and
star, which do not appear in G1,. Hence, from such substructure abun-
dance perspective, Gq3 is intuitively of more significance than Gyy;
and consequently, G3 should be evaluated to be more similar to Gy
than Gy to Gq. Therefore, the richness of the unique substructures oc-
curring in a graph can contribute to the evaluation of graph distance,
which is the basic principle underlying the measures we proposed
in this paper.

Since nodes and edges are elementary constituents of a graph,
size about nodes or edges in MCS will be a significant indication
of the similarity between graphs, which is the fundamental idea of
existing structure-based graph distance measures. For example, two
representatives of them, MCIS-based graph distance [9] and MCES-
based graph distance [4] use the number of nodes of MCIS, and the
number of the edges of MCES, respectively, to evaluate the similarity
between two graphs. However, in our studies, besides node or edge
information in MCS, information about more complex and larger
substructures in MCS will be utilized to evaluate distance between
a graph pair.

In the following parts of the paper, we will show that structural
differences between graphs can be amplified when considering in-
formation of larger substructures. Thus, if we evaluate graph dis-
tance in terms of certain larger or more complex substructures in-
stead of some trivial substructures, such as nodes or edges, we can
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Fig. 2. Substructures in Gy, Gz (G12), and G3 (Gy3).

evaluate graph distance with higher degree of precision or in much
finer grain than graph distance measures based on MCIS or MCES.

Evaluating graph distance according to richness of the unique sub-
structures is also practically meaningful in many real applications.
For example, in the analysis of protein interaction networks, such as
protein-protein interaction network, protein-DNA and gene-gene
interaction networks, it has been widely believed that substructures
of these networks represent certain functional modules of cells or
organisms. Thus, in Fig. 1, if triangle and star appearing in G;3 are
considered as functional modules of biological networks, then G;3
will contain more functional modules than G3. Consequently, we
can naturally come to the conclusion that G is more similar to Gy
than G, to G1. Hence, comparing protein networks in terms of sub-
structure information is biologically meaningful.

To accurately quantify graph distance is in great demand for many
applications, especially for researches on evolution of biology net-
works. For example, we could use Bayesian Networks [21] to study
SNPs [22] LD structure and their evolutions among different popu-
lations [23]. In such studies, how to measure similarity or distance
among the constructed networks is an interesting but challenging
problem. One of the great challenges is that traditional MCS-based
graph distance metric can only evaluate the graph distance in much
coarser grain, which cannot satisfy the requirement of identifying the
minute difference between different population structures. Hence,
it is of great need to devise new graph distance measures that can
evaluate graph distances precisely.

2. Preliminaries

We begin this section with some basic notations. Let G=(V,E,L,[)
be a labeled graph, where V is the set of vertices, E is the set of
edges and E € V x V, L is the set of labels, and [ : VUE — Lis a
labeling function that assigns a label to an edge or a vertex. Note
that graph labeling is one of key issues in problems related to graph
isomorphism. However, in some contexts, where graph isomorphism
is not significant, G also can be denoted as a 2-tuple (V,E).

The vertex set of G is referred to as V(G), and its edge set as E(G). A
path P in a graph is a sequence of vertices v1,vs, ..., vy, where vi e V
and vjv;, ¢ € E. The vertices v and v}, are linked by P and are called
the ends of path P. The number of edges of a path is its length, and the
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