
Pattern Recognition Letters 60–61 (2015) 57–64

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Sparse alternating decision tree ✩

Hong Kuan Sok∗, Melanie Po-Leen Ooi, Ye Chow Kuang

Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 46150, Selangor D.E., Malaysia

a r t i c l e i n f o

Article history:

Received 20 May 2014

Available online 17 March 2015

Keywords:

Alternating decision tree

Decision tree

Boosting

Sparse discriminant analysis

Feature selection

a b s t r a c t

Alternating decision tree (ADTree) is a special decision tree representation that brings interpretability to

boosting, a well-established ensemble algorithm. This has found success in wide applications. However, ex-

isting variants of ADTree are implementing univariate decision nodes where potential interactions between

features are ignored. To date, there has been no multivariate ADTree. We propose a sparse version of mul-

tivariate ADTree such that it remains comprehensible. The proposed sparse ADTree is empirically tested on

UCI datasets as well as spectral datasets from the University of Eastern Finland (UEF). We show that sparse

ADTree is competitive against both univariate decision trees (original ADTree, C4.5, and CART) and multi-

variate decision trees (Fisher’s decision tree and a single multivariate decision tree from oblique Random

Forest). It achieves the best average rank in terms of prediction accuracy, second in terms of decision tree

size and faster induction time than existing ADTree. In addition, it performs especially well on datasets with

correlated features such as UEF spectral datasets. Thus, the proposed sparse ADTree extends the applicability

of ADTree to a wider variety of applications.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Boosting is one of the most significant advances in machine learn-

ing research. Its underlying concept is to boost many “weak” base

classifiers into an arbitrarily accurate classification model. Boosting

initially weights every training sample equally. A weak learner is fitted

to the training dataset based on this weight distribution. After each

boosting cycle, the weights are updated such that correctly classified

samples are weighted lower while incorrectly classified samples are

weighted higher. The next boosting cycle uses the new weight dis-

tribution to train the weak classifier. A linear combination of these

weak classifiers forms the output of the classifier.

Decision trees have been a popular choice of weak learner for

boosting and have been shown to achieve good classification per-

formance. Unfortunately, they are often large, complex and hard to

interpret [16]. This also applies to bagged decision trees such as Ran-

dom Forest [4]. The issue with decision tree ensemble has led to the

invention of the alternating decision tree (ADTree) which brings in-

terpretability to the boosting paradigm [16]. Rather than building a

decision tree at each boosting cycle, a simple decision stump is used

instead. This decision stump consists of a decision node and two pre-

diction nodes. These one-level decision trees are then arranged in a

special decision tree representation with subtle differences compared

✩ This paper has been recommended for acceptance by F. Tortorella.
∗ Corresponding author. Tel.: +6 035 514 6238; fax: +6 035 514 6207.

E-mail address: sok.hong.kuan@monash.edu, sok1002@hotmail.com (H.K. Sok).

to classical decision trees such as C4.5 [30] and CART [5]. The ADTree

has been successfully implemented in various applications such as

genetic disorders [19], corporate performance prediction [8], man-

agement system [9], DNA microarray [32], automated trading [10],

and modeling of disease trait information [25].

Existing variants of ADTree implement univariate decision stumps

such that the decision node is split according to the value of a single

feature [11,16,23,24]. This is effectively an axis-parallel partitioning

method that divides a selected input feature into two disjoint ranges

for discriminating purposes. In this way, the feature selection is per-

formed implicitly as the “best” feature (axial direction) is selected.

The use of univariate decision nodes simplifies its interpretation since

important features are encoded within the alternating decision tree

hierarchy.

Clearly, the choice of univariate decision nodes can be limiting in

some cases, and may result in a large decision tree that complicates

its comprehensibility [6]. This is because univariate decision nodes

ignore potentially important interaction between features. By replac-

ing the decision node to a multivariate variant, better accuracy and

smaller tree size can be achieved [3]. However there is no reported

literature on a multivariate variant of ADTree.

For multivariate decision nodes, the feature selection has to be

incorporated explicitly. The number of features in a decision node is

often a measure of decision node complexity and hence multivariate

decision trees are often criticized for the loss of interpretability. This is

a particularly challenging problem for the ADTree, which is made up

of several weak classifiers. In order to induce a multivariate variant of

ADTree that remains comprehensible, we propose to find a sparse set

http://dx.doi.org/10.1016/j.patrec.2015.03.002

0167-8655/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.patrec.2015.03.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2015.03.002&domain=pdf
mailto:sok.hong.kuan@monash.edu
mailto:sok1002@hotmail.com
http://dx.doi.org/10.1016/j.patrec.2015.03.002


58 H.K. Sok et al. / Pattern Recognition Letters 60–61 (2015) 57–64

(a) (b) (c) (e) (d) 

Fig. 1. (a) General decision tree (e.g. C4.5 and CART) (b) univariate ADTree, all dotted arrows under a prediction node are evaluated and (c) sparse ADTree with multivariate decision

node. (d) Axis-parallel input space partitioning based on univariate ADTree in (b). (e) Input space partitioning based on sparse ADTree in (c). The values inside the partitions for

both (d) and (e) indicate the summed prediction values.

of features in each decision node to discriminate between different

classes. We achieve this by applying sparse linear discriminant analysis

(SLDA) [7]. However, the sparse discriminant analysis cannot be ap-

plied directly under boosting paradigm because it is unable to adapt

to the reweighting of the training dataset. Therefore, we propose a

simple modification on sparse discriminant analysis to allow for this.

The proposed sparse ADTree algorithm is empirically tested on

public datasets from the University of California, Irvine (UCI) Ma-

chine Learning Repository [15] as well as spectral datasets from the

University of Eastern Finland (UEF) [34]. We benchmarked our algo-

rithm against both univariate (existing ADTree, C4.5 and CART) and

multivariate (Fisher’s decision tree and a single multivariate oblique

Random Forest) trees and SLDA. We show that the sparse ADTree

achieves the best average rank in terms of prediction accuracy, sec-

ond in terms of decision tree size and faster induction time than

existing ADTree. We also show that it performs especially well on the

dataset with highly correlated features such as spectral datasets from

UEF.

The remainder of this paper is organized as follows. Section 2 pro-

vides a detailed background on general decision trees and ADTree.

Section 3 describes the proposed sparse ADTree in full details in-

cluding modifications to fit into boosting framework. Experimental

results are presented with further analysis in Section 4 and this paper

concludes in Section 5.

2. Background

In a typical supervised learning framework, training dataset D

which consists of N labeled samples is used for learning purpose.

The goal is to learn a classification model F(x) that generalizes to new

unseen samples. Each sample x is a p dimensional vector with label y

of either –1 or +1 for binary class problem. We address only binary

class problems to achieve clarity in presentation. Multiclass problems

with K classes can be handled by the mapping introduced by Allwein

et al. [1] and Dietterich [13].

2.1. Decision trees

Decision tree is a classifier with directed acyclic graph with nodes

and edges. It starts with a root node at the top of the model (see

Fig. 1(a)). Internal nodes are decision nodes and terminal nodes are

leaf nodes. Each decision node implements a decision function f (x)
and every edge branching out from it corresponds to a decision out-

come. Each leaf node stores a class label. Top-down recursive parti-

tioning is a common approach to split the input space populated by

the training dataset which results in a decision tree model.

Depending on decision function, decision trees are generally di-

vided into univariate and multivariate variants. Univariate decision

trees split on individual feature for each decision node while multi-

variate decision trees split on a feature vector (linear combination is

a common approach). Classical univariate decision trees are ID3, C4.5

[30] and CART [5].

CART-LC (multivariate version of CART) was proposed as well in

their pioneering work in 1984 to induce oblique decision tree where

deterministic hill-climbing heuristic with backward feature elimina-

tion is implemented to learn the multivariate decision node of the

form (1) parameterized by β,

f (x) = xTβ > 0. (1)

OC1 [29] was an improvement of CART-LC with two forms of ran-

domization to avoid local optimality of hill-climbing and standard

feature selection methods can be applied in an ad-hoc approach. In

[13], LMDT [6] was proposed to estimate the parameters in an iter-

ative approach to minimize the misclassification cost. Discriminant

analysis is a popular analytic approach in recent years to optimize the

parameters. These works include LDT [36] and Fisher’s decision tree

[26]. Our work follows this discriminant approach.

2.2. Alternating decision tree

ADTree is a generalization of classical decision trees. It consists

of alternating layers of decision nodes and prediction nodes (see

Fig. 1(b)). Prediction node contains real-valued prediction value. For

instance, the decision tree in Fig. 1(a) can be represented as ADTree

in Fig. 1(b) excluding the decision stump highlighted in circle. The

input space partitioning due to Fig. 1(b) is shown in Fig. 1(d). If a

given test sample (x1, x2) is (0.4, 0), decision tree in Fig. 1(a) will

classify it as class 2 following the right-most path and its coun-

terpart ADTree (without the highlighted decision stump) returns

sign(+0.2–0.3–0.4 = –0.5) = –1 or (class 2) by summing all the tra-

versed prediction values. The magnitude reflects the confidence mar-

gin on the prediction made and the sign makes the class prediction.

The evaluation simply becomes sign (+0.2–0.3–0.4–0.4 = –0.9) =
–1 if the highlighted decision stump is taken into account as well. A

higher confidence is achieved in this case (a magnitude of 0.9 instead

of 0.5).

Unique representation of ADTree allows multiple decision stumps

under the same prediction node as illustrated in Fig. 1(b) where addi-

tional decision stump highlighted in circle can be added. This is how

boosting is supported within specifically designed ADTree represen-

tation to improve prediction accuracy.

ADTree model can be described mathematically as a sum of de-

cision rules as shown in (2). Each decision rule r(x) consists of a

precondition, condition and real-valued prediction values: α+, α− and



Download English Version:

https://daneshyari.com/en/article/533739

Download Persian Version:

https://daneshyari.com/article/533739

Daneshyari.com

https://daneshyari.com/en/article/533739
https://daneshyari.com/article/533739
https://daneshyari.com

