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a b s t r a c t

Various distance and similarity measures in Atanassov’s intuitionistic fuzzy sets (IFSs) are applied to practical

problems. However, it is difficult to decide which one is the most suitable for measuring the degree of distance

or similarity, especially in the case of the occurrence of conflict results in practice. In this paper, we propose

the concept of aggregation distance measure for IFSs based on aggregation functions without zero divisors

to help decision makers to make final decisions. Furthermore, a novel technique is introduced to construct

similarity measures from a given distance measure with respect to non-filling fuzzy negations, which gives

a new direction for the construction method for similarity measures of IFSs. Some illustrative examples in

applications such as pattern recognition, fuzzy clustering and decision making are used to investigate the

effectiveness of the proposed measures.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal work of Zadeh, the fuzzy set (FS) theory charac-

terized by a membership function between zero and one has become a

useful tool to handle with imprecision and uncertainty [1]. In real-life

situations, taking the hesitation or uncertainty about the membership

degree into consideration, the degree of non-membership is not al-

ways equal to one minus the degree of membership, which is treated

as reasonable in FS theory. To address this issue, Atanassov intro-

duced the notion of intuitionistic fuzzy sets (IFSs) as an extension of

FS, in which not only the degree of membership is given, but also the

degree of non-membership degree [2].

Ever since IFSs’ appearance, many authors have paid great atten-

tion to the measures of distance and similarity between IFSs. Szmidt

and Kacprzyk proposed four distance measures between IFSs, which

were in some extent based on the geometric interpretation of intu-

itionistic fuzzy sets [3]. Li and Cheng proposed similarity measures of

IFSs based on an axiomatic approach and applied these measures to

pattern recognition [4]. But it was later pointed out that Li and Cheng’s

measures are not always effective in some cases [5–7]. Hung and Yang

proposed several similarity measures of IFSs based on Hausdorff dis-

tance and LP metric which can effectively be used with linguistic

variables [8,9]. Hatzimichailidis et al. introduced distance metric be-
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tween IFSs which makes use of matrix norms and fuzzy implications

[10]. Farhadinia presented a new similarity measure for IFSs by us-

ing the convex combination of endpoints and also focusing on the

property of min and max operators [11]. Iancu also introduced two

families of similarity measures based on Frank t-norms [12]. Most of

these aforementioned measures in different formats are originated

from axiomatic definitions. Recently, Baccour et al. and Xu and Chen

gave a comprehensive overview of distance and similarity measures

of IFSs [13,14].

Measuring the distance and similarity between IFSs is now being

extensively applied in many research fields, such as pattern recog-

nition, fuzzy clustering and decision making. However, there may

exist inconsistent results if we adopt different distance and/or simi-

larity measures in practical applications as exemplified in Section 4,

which will certainly get the decision makers into trouble. This situa-

tion can arise in a decision-making problem. How to make a decision

to choose the optimal alternative from the conflict conclusions is still

a problem to be solved. Li et al. gave a comparative analysis of the

existing similarity measures for IFSs to benefit selection of similarity

measures [15].

In this paper we attempt to deal with this problem from another

viewpoint. Taken n distances we interested in as inputs, it is expected

to produce a reasonable output, based on which the final decision is

made. It is within the domain of the theory of aggregation functions.

In this paper, the distance measures are aggregated as an aggregation

distance by using aggregation functions. The weighted average of the

existing distance measures is accepted as the overall evaluation. We

propose two approaches to set the weights based on mathematical
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foundations. (I) We select the optimal solution of the shortest distance

between a moving point and a vector with all its components degrees

of distance we care about as the expectation. (II) We choose the nor-

malized associated eigenvector of spectral radius of a non-negative

symmetric matrix as an assignment and the weighted average of the

degrees of distance the aggregation distance. Moreover, similarity

measures generated by non-filling fuzzy negations for a given dis-

tance measure are provided to meet the axiomatic definition.

The rest of this paper is organized as follows: In Section 2, we

recall basic concepts of intuitionistic fuzzy sets and some commonly

used distance and similarity measures between IFSs. In Section 3,

the aggregation distance measure for IFSs aggregated by an aggrega-

tion function without zero divisors is provided, as well as its induced

similarity measure generated from a given distance measure with

respect to a non-filling fuzzy negation. And their applications in pat-

tern recognition, fuzzy clustering and decision making are given in

Section 4. Finally, Section 5 concludes the present paper.

2. Preliminaries

In this section, we briefly recall some basic concepts relating to IFSs

and some popular distance and similarity measures between IFSs.

Definition 2.1 ([2]). Let a (crisp) set E be fixed. An Atanassov’s

intuitionistic fuzzy set A in E is an object of the form A =
{〈x,μA(x), υA(x)〉|x ∈ E}, where functionsμA(x), υA(x) : E → [0, 1] de-

fine the degree of membership and the degree of non-membership

of the element x ∈ E to A, respectively, and for every x ∈ E, 0 �
μA(x)+ υA(x)� 1.

The function πA(x) : E → [0, 1], given by πA(x) = 1 − μA(x)−
υA(x) defines the intuitionistic index of the element x in set A [2,16].

Specially, if πA(x) = 0 for each x ∈ E, then the IFS A degenerates into

a fuzzy set.

Let A and B be two IFSs given as A = {〈x,μA(x), υA(x)〉|x ∈ E} and

B = {〈x,μB(x), υB(x)〉|x ∈ E}. Denote Ac = {〈x, υA(x),μA(x)〉|x ∈ E};

A ⊆ B ⇔ (∀x ∈ E)(μA(x)� μB(x)&υA(x)� υB(x));
A = B ⇔ (∀x ∈ E)(μA(x) = μB(x)&υA(x) = υB(x));
A ∪ B = {〈x,μA(x)∨ μB(x), υA(x)∧ υB(x)〉|x ∈ E};

A ∩ B = {〈x,μA(x)∧ μB(x), υA(x)∨ υB(x)〉|x ∈ E}.

Let IFS(E) denote the family of all IFSs in the universe E.

Definition 2.2 ([17]). Let d be a mapping d : IFS(E)× IFS(E) → [0, 1].

If d(A, B) satisfies the following properties:

(DP1) 0 � d(A, B)� 1;

(DP2) d(A, B) = 0 if and only if A = B;

(DP3) d(A, B) = d(B, A);
(DP4) If A ⊆ B ⊆ C, then d(A, C)� d(A, B)∨ d(B, C).

Then d(A, B) is a distance measure between A and B.

Definition 2.3 ([4,7]). Let s be a mapping s : IFS(E)× IFS(E) → [0, 1].

s(A, B) is said to be the degree of similarity between A and B if s(A, B)
satisfies the following properties:

(SP1) 0 � s(A, B)� 1;

(SP2) s(A, B) = 1 if and only if A = B;

(SP3) s(A, B) = s(B, A);
(SP4) If A ⊆ B ⊆ C, then s(A, C)� s(A, B)∧ s(B, C).

It is proved that if d(A, B) is a distance measure between IFSs A and

B, then s(A, B) = 1 − d(A, B) is a similarity measure of A and B [17–19].

Remark 2.4. There are other ways to define axioms of distance and

similarity measures. For example, Hung and Yang [20] gave an ax-

iomatic definition of the distance and similarity measure for IFSs ex-

tended from FSs directly. Li et al. [15] suggested similarity measure

between IFSs should also satisfy

(SP5) S(A, Ac) = 0 if A is a crisp set

to make the definition of similarity measure more strict and precise.

Several kinds of distance measures have been investigated in the

literature. Here, we recall the widely used ones.

Let E = {x1, x2, . . . , xn}be a discrete set of universe, A and B two IFSs

in IFS(E). Wang and Xin [17] proposed a distance measure between A

and B as follows:

dp(A, B) = 1
p
√

n
p

√√√√ n∑
i=1

[ϕμ(xi)+ ϕυ(xi)]
p
, (1)

where ϕμ(xi) = |μA(xi)−μB(xi)|
2 , ϕυ(xi) = |υA(xi)−υB(xi)|

2 and p is a positive

integer.

Hung and Yang [8] proposed several similarity measures of IFSs

based on Hausdorff distance. The Hausdorff distance dH(A, B)between

A and B is defined as:

dH(A, B) = 1

n

n∑
i=1

max{|μA(xi)− μB(xi)|, |υA(xi)− υB(xi)|}. (2)

Based on this line of research, Hung and Yang [9] adopted the

concept of Lp metric to define the distance between A and B: (p � 1)

Lp(A, B) = 1

n

n∑
i=1

(|μA(xi)− μB(xi)|p + |υA(xi)− υB(xi)|p) 1
p . (3)

Note that dH(A, B) is also called Hamming distance by

Grzegorzewski [21]. And we also have limp→+∞ Lp(A, B) = dH(A, B).

It should be noticed that 0 � Lp(A, B)� 2
1
p . For this reason, it can be

normalized as

Lmod
p (A, B) = 1

n

n∑
i=1

(
1

2
|μA(xi)− μB(xi)|p + 1

2
|υA(xi)− υB(xi)|p

) 1
p

(4)

to satisfy (DP1). Specially, it follows that Lmod
1 (A, B) = d1(A, B) (also

called the normalized Hamming distance by Burillo and Bustince [22])

and limp→∞ Lmod
p (A, B) = dH(A, B).

Grzegorzewski [21] also introduced the Euclidean distance be-

tween IFSs A and B as follows:

dE(A, B) =
√√√√1

n

n∑
i=1

[max{(μA(x)− μB(x))
2, (υA(x)− υB(x))

2}]. (5)

3. Aggregation distance measure and its induced similarity

measure of intuitionistic fuzzy sets

In this section, the aggregation distance measure of IFSs on the ba-

sis of the existing distance measures is presented, so are the similarity

measures generated from a given distance measure with respect to

non-filling fuzzy negations.

Definition 3.1 ([23]). Let a mapping f : [0, 1]n → [0, 1] (n > 1)satisfy

the following properties.

(P1) f is idempotent at (0, 0, . . . , 0) and (1, 1, . . . , 1), i.e.,

f (0, 0, . . . , 0) = 0 and f (1, 1, . . . , 1) = 1;

(P2) f is monotonic increasing in each of its components, i.e.,

if xi � yi, i ∈ {1, 2, . . . , n}, then f (x1, x2, . . . , xn)�
f (y1, y2, . . . , yn).

Then f is referred to as an n-ary aggregation function.

Let f be an aggregation function. f is said to have zero divisors if

there exists x1, x2, . . . , xn ∈ (0, 1] such that f (x1, x2, . . . , xn) = 0 [24].

Conversely, we say f does not have zero divisors if f (x1, x2, . . . , xn) = 0,
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