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a b s t r a c t

Scene geometry, imaging laws, as well as computational mechanisms generate mathematical constraints
on both raw data and computed features. In many cases, these constraints place the patterns on geomet-
rically well-defined spaces, described as manifolds. In such cases, we argue that exploiting the geometry
of these manifolds is important to our understanding of the objects and semantics in the imagery. Statis-
tics and algorithms accounting for manifolds also yield improved performance in many vision applica-
tions. We justify these arguments by presenting our recent research efforts based on manifold theory
for addressing a variety of pattern recognition and computer vision problems, including hashing on man-
ifolds for efficient search, statistical modeling on Grassmann/Stiefel manifolds for activity recognition,
discriminative learning for group motion recognition, stochastic optimization for spatio-temporal align-
ment, and shape matching. We also discuss the manifolds of re-parameterizations and elastic shapes, as
well as applications of manifolds to face recognition and unsupervised adaptation of classification model
from one domain to another.

� 2013 Elsevier B.V. All rights reserved.

1. A differential-geometric view for patterns

Patterns, especially those arising from various modalities of
imagery, usually encode the interactions between scene geometry
and physical phenomena such as illumination and motion. On the
one hand, when these scenes are imaged using cameras, the
observed patterns obey certain mathematical constraints that are
induced by the underlying physical constraints. It is well known
that images of a convex object under all possible illumination
conditions lie on the so called illumination-cone (Georghiades
et al., 1998). Images taken under a stereo-pair are constrained by
the epipolar geometry of the cameras (Hartley and Zisserman,
2004). Similarly, the 3D pose of the human head is parameterized
by three angles hence, under constant illumination and expression,
the observed face of a human under different viewing directions
lies on a three-dimensional manifold. On the other hand, when
informative patterns are extracted and processed from the raw
imagery, additional mathematical constraints are frequently
imposed or incurred during the computation, so that the patterns
do not occupy the full linear Euclidean space but only reside in a
subset that can be analytically defined. Many classifiers, for
example, require a normalization of input features so that they

have zero mean and unit length. As a result, the set of normalized
features x’s reside on the unit hypersphere centered at the origin,
represented as xT x ¼ 1.

In a particular application, if these constraints are well-under-
stood, such as those studied in epipolar geometry and illumination
modeling, then one can design accurate modeling and inference
techniques using those knowledge. In many applications, such as
those discussed in later sections including texture classification,
human motion recognition, group activity analysis, and video
alignment, these constraints have a special form, often enabling a
geometric interpretation.

An immediate question, however, is why one should involve
these constraints that require new mathematical tools from differ-
ential geometry. One may wonder why we cannot use linear meth-
ods and multi-variate statistics in the classical Euclidean space,
with perhaps some loss of accuracy. A simple answer often quoted
is that, extrinsically embedding points into a larger vector space in-
creases the dimensionality of the data, as opposed to working with
intrinsic co-ordinates. In addition, there are several reasons why an
intrinsic analysis is much desired when considering statistical
analysis. Statistical quantities, such as the mean of a sample set,
in general are meaningful if they follow the geometric constraints
of the data itself. For example, the algebraic mean of a set of points
on a sphere, in general will not lie on the sphere. One can extrinsi-
cally compute the algebraic mean, and then project it back to the
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sphere, as a solution. However, the choice of projection operator
will result in different estimates of the mean. Similarly, how does
one define a meaningful equivalent of ‘covariance’ for a set of
points on the sphere? Another interesting issue arises when one
is faced with an optimization problem whose domain of optimiza-
tion is not Rn, but some geometrically well-defined subset, say, a
sphere. If one were to extend the domain of the function to the lar-
ger extrinsic vector space, and find the direction of steepest des-
cent in the ambient space, one may obtain a solution that does
not lie on the sphere. One is again confronted with the question
of how to project the solution back to the sphere, which again
raises questions of the dependence of the solution to the choice
of projection operation.

The theory of differential geometry provides principled solu-
tions to problems such as the ones described above. We hope to
convince the reader in the following sections that geometric inter-
pretation of the patterns in a number of computer vision applica-
tion leads to improved characterization of the data distributions
and improved empirical performances of algorithmic solutions,
by showing a series of examples that we recently explored. First,
we briefly go through the mathematical basics of differential
geometry and manifolds in Section 2. Our examples span a wide
spectrum of approaches, including hashing for efficient search over
a large database (Section 3), Grassmann/Stiefel manifolds for
describing linear dynamic systems (Section 4), discriminative
incremental learning (Section 5), stochastic optimization (Sec-
tion 6), as well as a non-parametric Fisher-Rao metric and its
extensions to shape analysis (Section 7). We also introduce mani-
fold-based facial analysis and domain adaptation techniques (Sec-
tion 8) before we conclude the paper in Section 9.

2. Preliminaries

In this section, we briefly recapitulate the mathematical prelim-
inaries needed to design various computational algorithms such as
statistical modeling, discriminative models, and nearest neighbor
search, etc., on non-Euclidean manifolds. The discussion below is
meant to be a utilitarian collection of concepts and resources that
the reader may draw upon to create effective algorithmic struc-
tures for learning problems in these non-Euclidean spaces, and is
by no means comprehensive or complete. For a comprehensive
introduction to differential geometry and manifolds, the reader is
referred to systematic treatment such as Lee (2002), Spivak
(1999), Boothby (1975), and Kreyszig (1991).

2.1. Basic definitions

A topological spaceM is called a manifold if it is locally Euclid-
ean. In more formal terms, for each point p 2 M, there exists an
open neighborhood U of p and a mapping / : U ! Rn such that
/ðUÞ is open in Rn and / : U ! /ðUÞ is a diffeomorphism. The pair
ðU;/Þ is called a coordinate chart for the points that fall in U. LetM
be an n-dimensional manifold and, for a point p 2M, consider a
differentiable curve c : ð��; �Þ !M such that cð0Þ ¼ p. The veloc-
ity _cð0Þ denotes the velocity of c at p. This vector has the same
dimension as the manifold and is an example of a tangent vector
toM at p. The set of all such tangent vectors is called the tangent
space to M at p. Even though the manifold M may be nonlinear,
the tangent space TpðMÞ is always linear and of the same dimen-
sion as the manifold M. Please see Fig. 1(a) for an illustration.

2.2. Metrics via geodesic distances

The task of measuring distances on a manifold is accomplished
using a Riemannian metric. A Riemannian metric on a differentiable

manifold M is a map h�; �ip : TpðMÞ � TpðMÞ ! R that smoothly
associates to each point p 2M a symmetric, bilinear, positive defi-
nite form on the tangent space TpðMÞ, so that 8v i;v2 2 TpðMÞ the
inner product between them is given by hv1;v2ip. As shown in
Fig. 1(b), given the Riemannian metric that characterizes the inner
products in an infinitesimal local neighborhood of each point p 2 M
, it becomes possible to define lengths of paths and the geodesic
paths on a manifold. Let a : ½0;1� ! M;að0Þ ¼ p1;að1Þ ¼ p2 be a dif-
ferential path, and we can assign it a path length according to

L½a� ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h _aðtÞ; _aðtÞiaðtÞ

q
dt; ð1Þ

where h�; �ip denotes the given Riemannian metric at point p. A min-
imizer of L is called a geodesic path:

a� ¼ argmin
a½0;1�!M;að0Þ¼p1 ;að1Þ¼p2

L½a�: ð2Þ

To be precise, a global minimizer is called a minimal geodesic while
a local minimizer is termed geodesic. A common way to find a geo-
desic is to minimize an energy function E:

E½a� ¼
Z 1

0
h _aðtÞ; _aðtÞiaðtÞdt: ð3Þ

E½a� differs from L½a� in that its integrand is square of the one in L½a�
and one can show that they have the same minima. The problem
now shifts to finding minima of E½a�.

One way to solve this problem is to use the calculus of variation
and derive the Euler–Lagrange equation that the minimizer (geo-
desic) satisfies. To express this equation in local coordinates, let,
for any p 2M, fEi;p; i ¼ 1; . . . ;mg denote a basis of the tangent
space TpðMÞ. Using the local coordinates ðx1; x2; . . . ; xmÞ for p, we
can express the Riemannian metric in the local coordinates using
an m�m matrix gij ¼ Ei; Ej

� �
p. Using the Christoffel symbols given

by

Ck
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1
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where gks denotes the ðk; sÞth-elements of the inverse of g, the Eu-
ler–Lagrange or the geodesic equation can be written as

d2xk

dt2 þ Ck
i;j

dxi

dt
dxj

dt
¼ 0: ð5Þ

Although this equation provides a necessary condition for the geo-
desic to satisfy, it is usually difficult to solve. Also note that though
the Christoffel symbols are written in the same notation as tensors
with index notation, they are not tensors because they do not trans-
form like tensors under a change of coordinates (See, for example, p.
141 of Kreyszig (1991)).

In case where M is embedded inside a vector space V and the
Riemannian metric on M is the one inherited from V, there is a
more direct solution to finding the geodesics. This approach, called
path straightening (Klassen and Srivastava, 2006), initializes the
search for a� using an arbitrary path and then iteratively updates
it using the gradient of E. In this approach, the gradient of E is avail-
able in an analytical form, as a tangent vector field along the cur-
rent path a that can be used to efficiently update a.

2.3. Exponential maps and its inverse

Many statistical modeling procedures are performed on tangent
spaces of manifolds. An example in devising a probability density
function on a manifold is to map points on the manifold to the
tangent space, and estimate a probability density function in the
tangent-space using traditional vector-space techniques, then
map the estimated probability density function back to the
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