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a b s t r a c t

Hidden patterns, rendered visible by hindsight, often stand revealed as strong influences. Rama Chellap-
pa’s lab in the mid to late ’80s molded our character and scholarship in more ways than one. Rama ably
handled the transition from image processing to computer vision and established an applied math and
computing infrastructure from which we continue to benefit. In particular, the themes important to
King-Sun Fu—syntax, semantics and statistics—were all debated in Rama’s lab at that time. We argue that
this triad remains important. With syntactic representations losing mindshare to statistics, we remain in
the hunt for unification. And with the syntax versus semantics debate unresolved, it deserves a hearing as
well. We offer two themes—uncertainty and interaction—to aid in the process of unification. First, we
show that complex wave functions carry probabilistic location information in their magnitude and syn-
tactic (curve) information in their phase while representing uncertainty at a fundamental level. Next,
after reviewing work in analytic philosophy, we connect semantics to intentional, mental content. Ana-
lytic philosophy reminds us to take human experience seriously but remaining physicalist if possible. To
this end, we introduce a nondualist interactionist model of experience, wherein compositional (physical)
subjects are constantly shaping and being shaped by a physical world. We then demonstrate that wave
functions can accommodate interaction, closely tracking previous work in physics on the measurement
problem. The linearity and superposition properties of wave functions allow for literal addition of waves
created by human interaction with shapes. Finally, we briefly survey the current situation in the human–
computer interaction (HCI) field and argue that mathematical models of interaction akin to those in pat-
tern recognition can aid HCI. We close by arguing that we can follow in Fu’s footsteps and incorporate the
mathematical modeling of human interaction into pattern recognition.
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1. Invocation

Hold the flame ’til the dream ignites

A spirit with a vision is a dream with a mission

Rush, Mission

Luck is often described as ‘‘being in the right place at the right
time’’. Looking back, it seems clear that we were very fortunate in-
deed to inhabit Prof. Rama Chellappa’s lab during the mid ’80s, in
the Signal and Image Processing Institute (SIPI) at the University
of Southern California (USC) set amidst the backdrop of a sophisti-
cated, urban Los Angeles. Computer vision was in its infancy, strug-
gling to emerge from the shadow of an established artificial
intelligence (AI). Pattern recognition was seeking to reinvent itself
in the hands of a resurgent neural networks field (Bishop, 1996)

and would subsequently find a more stable partner in machine
learning (Bishop, 2007). If there was interest in human centered
computing, we certainly did not see much evidence at that point.

Rama was and remains the embodiment of that transition from
a field taxonomy so stable (in the late ’70s) that it verged on taxi-
dermy to a period (the early ’80s) when ‘‘all that is solid melts into
air’’2 (Berman, 1988). Not content with resting on his laurels in sig-
nal and image processing, Rama sought to bring the clarity and rigor
found in mature (and older) fields that stood on the shoulders of
applied mathematics to the nascent (and therefore fertile) area of
computer vision. This quest was aided by three significant factors:
(i) the brilliance of Marr (1982) in clearly articulating the nature of
representation in computer vision, (ii) the integrative genius of Fu
(1986) in bringing together syntax, semantics and statistics in
pattern recognition, and (iii) the strong reliance of neural networks
on statistical mechanics, nonlinear optimization and applied mathe-
matics in general. While we return to these themes frequently in this
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work, it is to the specifics of Rama’s contributions—and the manner
in which they illustrate the deployment of applied math in computer
vision—that we now turn.

Since we’re using a signal processing to computer vision cross-
over perspective, we bypass Rama’s considerable work on Markov
random fields in image processing and analysis (Chellappa and
Kashyap, 1982) except to note in passing that this framework has
served us well over the past three decades. Instead, we highlight
the twin contributions in shape from shading and motion estima-
tion to buttress our crossover points. In shape from shading, the
problem of enforcing integrability was a thorn in the variational
framework. Frankot and Chellappa (1988) designed an elegant pro-
jection algorithm to find the closest, valid surface in a least-squares
sense to the non-integrable surface obtained via the calculus of
variations approach. The projection method was signal processing
inspired through and through using the fast Fourier transform
(FFT) and least-squares estimation to full effect. Next up, in motion
analysis, Broida and Chellappa (1986) were the first to use a Kal-
man filter to recursively estimate rigid body motion parameters
from noisy images. Once again, the application of signal processing
methodologies (filtering, estimation etc.) bore immediate fruit in
an important computer vision problem. In Rama’s lab, these early
successes reinforced in all of us not only the importance of math-
ematical rigor in vision problems but the impact of ideas drawn
from other fields such as signal processing on the fledgling area
of computer vision. Furthermore, the specific successes in shape
from shading and motion estimation emboldened Rama to empha-
size (i) the correspondence problem in object recognition and mo-
tion and (ii) the link between variational problems and specific
differential equations such as the Poisson equation (Horn, 1986;
Simchony et al., 1990). The emphasis on correspondence in the face
of an ascendant optical flow paradigm was particularly courageous
and key to shaping my views (Gold and Rangarajan, 1996; Chui and
Rangarajan, 2000) even though I did not realize it at that time.

SIPI culture in general and Rama’s background in MRFs in par-
ticular meant that inference and estimation principles were drilled
into us usually via statistics courses taken in the math department.
Geman and Geman’s landmark paper on MRFs (Geman and Geman,
1984), Gibbs sampling and simulated annealing forced us to pick
up quite a bit of statistical mechanics as well. Entropy, computa-
tional temperature and more broadly, the role of uncertainty
became common themes in conversations. The change in world-
view accompanying the transition from image processing to com-
puter vision meant that we had to grapple with artificial
intelligence for the first time. For many of us with undergraduate
engineering backgrounds—with a lack of emphasis on philoso-
phy—this was simultaneously uncomfortable and exciting. In par-
ticular, this implied taking the central issue of representation in
AI seriously. Syntax versus semantics (Putnam, 1980), the Chinese
room (Searle, 1980) and more generally the nooks and crannies of
strong AI (Russell and Norvig, 2009) were endlessly debated. It is
no coincidence that Fu’s seminal work on the unification of syntax
and semantics (Fu, 1986) with a strong focus on statistical pattern
recognition became a linchpin. Fu forced us to focus on the triad—
syntax, semantics and statistics—while remaining grounded in the
nuts and bolts of pattern recognition and computer vision.

We argue that Fu’s triad is even more relevant today. While the
past thirty years has seen much progress in the development of ro-
bust algorithms (for classification and regression), it is fair to say
that the dominant paradigm has been statistics with syntactic rep-
resentations frequently discarded or sidelined due to perceived
(and actual) brittleness in the latter. The importance of uncertainty
in representation has also faded and replaced (unsuccessfully as
we shall argue) by variance and entropy in parametric and non-
parametric probability distributions. The syntax versus semantics
debate has not fared any better in mainstream AI circles. While

analytic philosophy has made tremendous strides in the past
twenty years in delineating the distinction between the computa-
tional and the experiential, these advances have not been absorbed
in information processing circles. Concomitantly, we have seen the
rise of human centered computation and the field of human–
computer interaction (HCI), but we are not aware of any serious at-
tempts to educate the (usually) younger denizens of HCI with the
significance of Fu’s triad in their endeavors. Consequently, HCI
and related areas remain unaware of the importance of interaction
(between the experiential and the computational) in anchoring
semantics while informing syntactic and statistical representa-
tions. To this end, we identify the twin themes of uncertainty
and interaction as central and attempt to unpack their significance
in this essay.

2. Uncertainty

Who can face the knowledge

That the truth is not the truth

Obsolete

Absolute

Rush, Distant Early Warning

In Section 1, we introduced Fu’s contributions in the larger con-
text of the entire field of pattern recognition. In this section, we fo-
cus on shape analysis in our attempt to discuss uncertainty in
syntactic and statistical representations. We will not be concerned
with semantics here, which is deferred to Section 3.

Representations inspired by probability theory and statistics—
placed under the same rubric here—have thrived and prospered
in shape analysis. Especially when shapes are parametrized by
point-sets, probabilistic representations have become quite popu-
lar due to the relative ease of density estimation in lower dimen-
sions. In the past twenty years, shape correspondence, non-rigid
deformable matching, shape dictionaries etc. have all seen consid-
erable progress since the robustness afforded by the representa-
tions has allowed for outlier detection, incomplete shape
matching and so on. In many cases, shape density functions are
first estimated using Parzen windows or related methods. Subse-
quently, shape densities are matched using entropy minimization
or other criteria to obtain shape deformation, shape atlases (Chen
et al., 2012) and the like. Note the simplicity of the representation
schemes which feature little to no explicit syntax. Point-sets are
generally i.i.d. allowing for straightforward density estimation
and the Hausdorff topology prevents the use of relational informa-
tion. In spite of this, the robustness of the representation can ac-
count for both point jitter and outliers belying the need for
synthesizing relational and statistical information.

When shapes are parsed into sets of non self- or other-
intersecting closed planar curves (in 2D), level sets and distance
transform representations have become popular in this space
(Osher and Fedkiw, 2002). Distance transforms satisfy the eikonal
equation krSk ¼ 1 (with a constant forcing function) with the zero
level sets comprising the shape. In contrast to the point-set repre-
sentation, distance functions embed curve syntactic information
into a scalar field SðxÞ. There is no room for uncertainty in the rep-
resentation however, for signed and unsigned distance functions
are highly constrained geometric objects that leverage the curve
(relational) topology information. These constraints (implicit in
krSk ¼ 1) do not allow distance functions to be added, for exam-
ple, or facilitate shape atlas computation. When one shape contains
two curves and another three curves, their scalar distance trans-
form fields cannot be easily combined. Consequently, while this
representation has flourished with active contours and level sets
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