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a b s t r a c t

We consider the problem of fitting a union of subspaces to a collection of data points drawn from one or
more subspaces and corrupted by noise and/or gross errors. We pose this problem as a non-convex opti-
mization problem, where the goal is to decompose the corrupted data matrix as the sum of a clean and
self-expressive dictionary plus a matrix of noise and/or gross errors. By self-expressive we mean a dictio-
nary whose atoms can be expressed as linear combinations of themselves with low-rank coefficients. In
the case of noisy data, our key contribution is to show that this non-convex matrix decomposition prob-
lem can be solved in closed form from the SVD of the noisy data matrix. The solution involves a novel
polynomial thresholding operator on the singular values of the data matrix, which requires minimal
shrinkage. For one subspace, a particular case of our framework leads to classical PCA, which requires
no shrinkage. For multiple subspaces, the low-rank coefficients obtained by our framework can be used
to construct a data affinity matrix from which the clustering of the data according to the subspaces can be
obtained by spectral clustering. In the case of data corrupted by gross errors, we solve the problem using
an alternating minimization approach, which combines our polynomial thresholding operator with the
more traditional shrinkage-thresholding operator. Experiments on motion segmentation and face clus-
tering show that our framework performs on par with state-of-the-art techniques at a reduced compu-
tational cost.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The past few decades have seen an explosion in the availability
of datasets from multiple modalities. While such datasets are usu-
ally very high-dimensional, their intrinsic dimension is often much
smaller than the dimension of the ambient space. For instance, the
number of pixels in an image can be huge, yet most computer
vision models use a few parameters to describe the appearance,
geometry and dynamics of a scene. This has motivated the devel-
opment of a number of techniques for finding low-dimensional
representations of high-dimensional data.

One of the most commonly used methods is Principal Compo-
nent Analysis (PCA), which models the data with a single low-
dimensional subspace. In practice, however, the data points could
be drawn from multiple subspaces and the membership of the data
points to the subspaces could be unknown. For instance, a video se-
quence could contain several moving objects and different sub-
spaces might be needed to describe the motion of different
objects in the scene. Therefore, there is a need to simultaneously
cluster the data into multiple subspaces and find a low-dimen-
sional subspace fitting each group of points. This problem, known

as subspace clustering, finds numerous applications in computer vi-
sion, e.g., image segmentation (Yang et al., 2008), motion segmen-
tation (Vidal et al., 2008) and face clustering (Ho et al., 2003),
image processing, e.g., image representation and compression
(Hong et al., 2006), and systems theory, e.g., hybrid system identi-
fication (Vidal et al., 2003b).

1.1. Prior work on subspace clustering

Over the past decade, a number of subspace clustering methods
have been developed. This includes algebraic methods (Boult and
Brown, 1991; Costeira and Kanade, 1998; Gear, 1998; Vidal et al.,
2003a; Vidal et al., 2004; Vidal et al., 2005), iterative methods
(Bradley and Mangasarian, 2000; Tseng, 2000; Agarwal and
Mustafa, 2004; Lu and Vidal, 2006; Zhang et al., 2009), statistical
methods (Tipping and Bishop, 1999,Sugaya and Kanatani, 2004,
Gruber and Weiss, 2004,Yang et al., 2006, Ma et al., 2007,Rao
et al., 2008, Rao et al., 2010), and spectral clustering-based meth-
ods (Boult and Brown, 1991; Yan and Pollefeys, 2006; Zhang
et al., 2010; Goh and Vidal, 2007; Elhamifar and Vidal, 2009;
Elhamifar and Vidal, 2010; Elhamifar and Vidal, 2013; Liu et al.,
2010; Chen and Lerman, 2009). Among them, methods based on
spectral clustering have been shown to perform very well for
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several applications in computer vision (see Vidal (2011) for a re-
view and comparison of existing methods).

Spectral clustering-based methods (see von Luxburg, 2007 for a
review) decompose the subspace clustering problem in two steps.
In the first step, a symmetric affinity matrix C ¼ ½cij� is constructed,
where cij ¼ cji P 0 measures whether points i and j belong to the
same subspace. Ideally cij � 1 if points i and j are in the same sub-
space and cij � 0 otherwise. In the second step, a weighted undi-
rected graph is constructed where the data points are the nodes
and the affinities cij are the weights. The segmentation of the data
is then found by clustering the eigenvectors of the graph Laplacian
using central clustering techniques, such as k-means. Arguably, the
most difficult step is to build a good affinity matrix. This is because
two points could be very close to each other, but lie in different
subspaces (e.g., near the intersection of two subspaces). Con-
versely, two points could be far from each other, but lie in the same
subspace.

Earlier methods for building an affinity matrix (Boult and
Brown, 1991; Costeira and Kanade, 1998) compute the singular
value decomposition (SVD) of the data matrix D ¼ URV> and let
C ¼ V1V>1 , where the columns of V1 are the top r ¼ rankðDÞ singular
vectors of D. The rationale behind this choice is that cij ¼ 0 when
points i and j are in different independent subspaces and the data
are uncorrupted, as shown in Vidal et al. (2005). In practice, how-
ever, the data are often contaminated by noise and gross errors.
In such cases, the equation cij ¼ 0 does not hold, even if the rank
of the noiseless D was given. Moreover, selecting a good value
for r becomes very difficult, because D is full rank. Furthermore,
the equation cij ¼ 0 is derived under the assumption that the sub-
spaces are linear. In practice, many datasets are better modeled by
affine subspaces.

More recent methods for building an affinity matrix address
these issues by using techniques from sparse and low-rank repre-
sentation. For instance, it is shown in Elhamifar and Vidal (2009,
2010, 2013) that a point in a union of multiple subspaces admits
a sparse representation with respect to the dictionary formed by
all other data points, i.e., D ¼ DC, where C is sparse. It is also shown
in Elhamifar and Vidal (2009, 2010, 2013) that, if the subspaces are
independent, the nonzero coefficients in the sparse representation
of a point correspond to other points in the same subspace, i.e., if
cij–0, then points i and j belong to the same subspace. Moreover,
the nonzero coefficients can be obtained by ‘1 minimization. These
coefficients are then converted into symmetric and nonnegative
affinities, from which the segmentation is found using spectral
clustering. A very similar approach is presented in Liu et al.
(2010). The major difference is that a low-rank representation is
used in lieu of the sparsest representation. While the same
principle of representing a point as a linear combination of other
points has been successfully used when the data are corrupted
by noise and gross errors, from a theoretical viewpoint it is not
clear that the above methods are effective when using a corrupted
dictionary.

1.2. Paper contributions

In this paper, we propose a general optimization framework for
solving the subspace clustering problem in the case of data cor-
rupted by noise and/or gross errors. Given a corrupted data matrix
D 2 RM�N , we wish to decompose it as the sum of a self-expressive,
noise-free and outlier-free (clean) data matrix A 2 RM�N , a noise
matrix G 2 RM�N , and a matrix of sparse gross errors E 2 RM�N .
We assume that the columns of the matrix A ¼ a1; a2; . . . ; aN½ � are
points in RM drawn from a union of n P 1 low-dimensional linear
subspaces of unknown dimensions fdign

i¼1, where di � M. We also
assume that A is self-expressive, which means that the clean data
points can be expressed as linear combinations of themselves, i.e.,

aj ¼
XN

i¼1

aicij or A ¼ AC; ð1Þ

where C ¼ ½cij� is the matrix of coefficients. This constraint aims to
capture the fact that a point in a linear subspace can be expressed
as a linear combination of other points in the same subspace. There-
fore, we expect cij to be zero if points i and j are in different
subspaces.

Notice that the constraint A ¼ AC is non-convex, because both A
and C are unknown. This is an important difference with respect to
existing methods, which enforce D ¼ DC where D is the dictionary
of corrupted data points. Another important difference is that we
directly enforce C to be symmetric, while existing methods sym-
metrize C as a post-processing step.

The proposed framework, which we call Low Rank Subspace
Clustering (LRSC), is based on solving the following non-convex
optimization problem:

ðPÞ
min
A;C;E;G

kCk� þ s
2 kA� ACk2

F þ a
2 kGk

2
F þ ckEk1

s:t: D ¼ Aþ Gþ E and C ¼ C>;

where kXk� ¼
P

iriðXÞ, kXk2
F ¼

P
ijX

2
ij and kXk1 ¼

P
ijjXijj are, respec-

tively, the nuclear, Frobenius and ‘1 norms of X. The above formula-
tion encourages:

� C to be low-rank (by minimizing kCk�),
� A to be self-expressive (by minimizing kA� ACk2

F ),
� G to be small (by minimizing kGk2

F ), and
� E to be sparse (by minimizing kEk1).

The main contribution of our work is to show that important
particular cases of P (see Table 1) can be solved in closed form from
the SVD of the data matrix. In particular, we show that in the
absence of gross errors (i.e., c ¼ 1), A and C can be obtained by
thresholding the singular values of D and A, respectively. The thres-
holding is done using a novel polynomial thresholding operator,
which reduces the amount of shrinkage with respect to existing
methods. Indeed, when the self-similarity constraint A ¼ AC is en-
forced exactly (i.e., a ¼ 1), the optimal solution for A reduces to
classical PCA, which does not perform any shrinkage. Moreover,
the optimal solution for C reduces to the affinity matrix for sub-
space clustering proposed by Costeira and Kanade (1998). In the
case of data corrupted by gross errors, a closed-form solution ap-
pears elusive. We thus use an augmented Lagrange multipliers
method. Each iteration of our method involves a polynomial thres-
holding of the singular values to reduce the rank and a regular
shrinkage-thresholding to reduce gross errors.

Table 1
Particular cases of P solved in this paper.

Relaxed Exact

Uncorrupted
P1: Section 3.1 P2: Section 3.2
0 < s <1 s ¼ 1
a ¼ 1 a ¼ 1
c ¼ 1 c ¼ 1

Noise
P3: Section 4.1 P4: Section 4.2
0 < s <1 s ¼ 1
0 < a <1 0 < a <1
c ¼ 1 c ¼ 1

Gross errors
P5: Section 5.1 P6: Section 5.2
0 < s <1 s ¼ 1
0 < a <1 0 < a <1
0 < c <1 0 < c <1
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