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a b s t r a c t

In this paper, we present a method to model shadows in outdoor scenes. Here, we note that the shadow
areas correspond to the diffuse skylight which arises from the scattering of the sunlight by particles in the
atmosphere. This yields a treatment in which shadows in the image can be viewed as a linear combina-
tion of scattered light obeying Rayleigh scattering and Mie theory. This allows for the computation of a
ratio which permits casting the problem of recovering the shadowed areas in the image into a clustering
setting making use of active contours. This also opens-up the formulation of a metric that can be used to
assess the degree upon which the scene is overcast. We illustrate the utility of the method for purposes of
detecting shadows in real-world imagery, provide time complexity results and compare against a number
of alternatives elsewhere in the literature.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Shadow detection and removal is an important preprocessing
step for purposes of object recognition, video surveillance and seg-
mentation (Tian et al., 2009). This is particularly relevant in out-
door environments, where strong shadows ensue due to overcast
conditions in addition to cast and self-shadowing. Despite recent
interest, shadow detection in outdoor scenes remains a challenging
task. Existing methods are often restricted to indoor environments
(Wang et al., 2006), require prior knowledge regarding the illumi-
nation setting and geometry (Knill et al., 1997), employ multiple
images (Finlayson et al., 2009) or require user input (Wu and Tang,
2005).

Indeed, a wide variety of techniques have been proposed, which
employ a wide range of features and models to detect and remove
cast shadows. These include chromaticity (Cucchiara et al., 2003;
Salvador et al., 2004), scene or object geometry (Fang et al.,
2008; Hsieh et al., 2003) and texture (Sanin et al., 2010; Leone
and Distante, 2007). Along these lines, Cucchiara et al. (2003) use
the HSV colour space base upon the intuition that such colour
space provides a natural separation between the chromaticity
and the luminosity. Salvador et al. (2004), in the other hand, use
the c1c2c3 colour space, i.e. the hexadecimal RGB colour triplet,
over an image region so as to reduce the effects of noise corruption.

In Salvador et al. (2004), the authors also employ the geomet-
rical properties of the shadows. They do this by following
Funka-Lea and Bajcsy (1995), who present a number of low com-
putational cost cues for shadow recognition. Fang et al. (2008)
employ a geometry model, whereby they assume the scene back-
ground to be a flat surface. In an alternative approach, Hsieh et al.
(2003) separate the scenes into blobs so as to recover individual
objects for purposes of geometric analysis. Their method hinges
in the notion that, as the blobs corresponding to objects in the
scene may have different orientations, the extreme points in the
blobs can be used to recover shadow-object pairs based upon a
Gaussian model defined in terms of the pixel coordinates and
their intensities.

As mentioned earlier, textures have also been used for shadow
detection. This hinges in the rationale that texture correlation is
expected to be invariant to illumination changes and, hence, robust
to shadowing. This is exploited by Leone and Distante (2007), who
describe textural information in terms of redundant systems of
functions so as to improve the background model used for shadow
detection. Sanin et al. (2010) use gradient-based texture correla-
tion to discriminate amongst candidate shadow regions.

Alternative approaches include shadow flows (Porikli and
Thornton, 2005), i.e. a disparity vector computed by comparing a
shadow model with a background model, multiple views and the
use of user input. This is the case for the work presented in
Finlayson et al. (2009), where the authors recover a shadow-free
image based upon the assumption that the illumination varies
slowly and, hence, gives rise to the small gradients in each view.
As a result, large gradients depend on reflectance changes. The
shadow-free image is then compared with the input image so as
to recover the shadow edges via thresholding.
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As related to the use of user input, in Wu and Tang (2005), a
probabilistic method and matting are used to remove shadows
based upon a quadmap (Wu et al., 2007). The application of statis-
tics is somewhat related to the method in Wang et al. (2006),
where a dynamic conditional Markov random field is used to de-
tect shadows and perform background subtraction in indoor
scenes. In Martel-Brisson and Zaccarin (2005), the authors employ
a Gaussian mixture model to characterise the moving cast shadows
on the surfaces across the scene.

In this paper, we tackle the problem of detecting shadows in
outdoor environments by viewing the shadowed areas in the im-
age as being lit by skylight, whereas the non-shadowed regions
in the image are illuminated by both, skylight and sunlight. This
is akin to the treatment presented in Gu and Robles-Kelly (2012),
where the authors detect shadows using Rayleigh and Mie scatter-
ing theory. Following Gu and Robles-Kelly (2012), we note that the
edges in the image produced by shadows should correspond to a
mix of sunlight to skylight whose ratio is constant throughout
the scene.

This paper is, hence, a natural extension of Gu and Robles-Kelly
(2012) with a number of major improvements. Firstly, spherical
harmonics are used so as to achieve the relaxation of the single
point light source assumption in Gu and Robles-Kelly (2012). This
is an important theoretical development since it assures our meth-
od holds for complex sky luminance patterns, where the direction
of the skylight that illuminates the area of interest can depart
greatly from a single point light source assumption. This is as light
scattered by cloud and haze can follow multiple paths, impinging
the object surface from arbitrary directions. We use these spherical
harmonics so as to cast the problem into a segmentation setting
where techniques such as active contours (Blake et al., 1998) can
be used to detect the shadows in the image. This yields a result
in accordance with that in Gu and Robles-Kelly (2012), where the
active contour evolution is governed by a ratio that arises from
the use of Rayleigh scattering and Mie theory to model the skylight
illuminating the shadowed areas.

Secondly, here we note that, in practice, the shadow area is not
always distinct from sunlit area. This is particularly true for the
fringe of the shadows in the image, where the transition region,
i.e. penumbra, consists of sunlight and skylight mixed with one an-
other. Thus, here, instead of segmenting the image in a binary set-
ting, we recover the proportion of sunlight to skylight along the
penumbra area. We illustrate how recovering the exact proportion
of these two components can be tackled using image matting by
post-processing the shadow boundary with KNN Matting (Chen
et al., 2013).

Thirdly, we propose a weather metric so as to estimate meteo-
rological conditions from single images. Our metric contrasts in
simplicity with other methods elsewhere in the literature which
aim at inferring atmospheric phenomena for the sky appearance.
For instance, the International Commission on Illumination (CIE)
has established a standard sky model (CIE, 2002) with five degrees
of freedom. This model, proposed by Preetham et al. (1999), de-
pends upon five parameters which account for different weather
conditions and climates. Despite effective, the model’s complexity
makes it cumbersome to use in practical settings. As a result,
researchers have attempted to use a single parameter, i.e. turbidity,
to describe the effect of Mie scattering effect. We remit the inter-
ested reader to the detailed description in the classic book by
Minnaert (1954).

It is also worth noting that here we use a wavelength dependent
Mie scattering term. This contrasts with the one used in Gu and
Robles-Kelly (2012), where a simplified expression devoid of wave-
length dependence was used. Thus, the method described here re-
lies on the estimation of model parameters before shadow
detection. We tackle this drawback by applying an initialisation

step which estimates the initial model parameters from the input
image. The initialisation presented here is robust to various weath-
er conditions.

The paper is organised as follows. In the following section, we
model the skylight as a linear combination of the Rayleigh and
Mie scattered light. With this linear combination at hand, we then
present the ratio used for the evolution of the active contour,
which we present in Section 4. From the ratio, we propose a weath-
er metric to estimate the meteorological condition of clouds
obscuring the sky. This is, we propose a method to appraise the de-
gree upon which the sky is overcast based upon a single parameter.
We elaborate on the implementation of our method in Section 5.
Finally, we present results and conclusions in Sections 6 and 7,
respectively.

2. Rayleigh scattering and Mie theory

As mentioned earlier, here, we note that, in outdoor scenes, the
shadowed areas correspond to the diffuse skylight which arises
from the scattering of the sunlight by particles in the atmosphere
(Narasimhan and Nayar, 2002). Thus, we employ the Rayleigh scat-
tering and Mie theory of sunlight propagation in the atmosphere to
model the shadows.

Recall that, when sunlight enters the atmosphere, it is scattered
by the particles in the air. When these particles are small as com-
pared to the wavelength of the impinging light (typically less than
1 tenth the wavelength), the scattering can be approximated by the
proportion of the fourth power of the wavelength of the sun light,
i.e. the Rayleigh scattering (Kerker, 1969). It is worth noting in
passing that this provides a physical explanation for the sky being
blue, as the blue light in shorter in wavelength and, hence, is scat-
tered much more than the red light corresponding to longer wave-
lengths. The Rayleigh scattering is given by

ERayleigh ¼
8p3ðr2 � 1Þ2

3Nk4

6þ 3pn

6� 7pn

� �
EðkÞ ð1Þ

where EðkÞ is the power spectrum of the illuminant at wavelength k,
r ¼ 1:0003 is the refractive index of air in the visible spectrum,
N ¼ 2:545� 1025 is number of molecules per unit volume and pn

is the depolarization factor, which is considered to be 0.035 for air.
However, when the sunlight is scattered by particles bigger or

of equal size to the wavelength, the scattering phenomenon is
modelled by Mie theory (Kerker, 1969). Mie theory states that
the scattering is proportional to the second power of the wave-
length. Mie theory is generally employed to model the scattering
caused by haze in the atmosphere. This is as light scatters more
uniformly across wavelengths, which causes a whitewash appear-
ance in haze and cloud. Mie scattering is given by

EMie ¼ 0:434Bcp 2p
k

� �v�2

EðkÞ ð2Þ

where c is the concentration factor that varies with turbidity T in
the inteval ð0:6544T � 0:6510Þ � 10ð�16Þ;v is Junge’s exponent with
a value of 4 for the sky and B ¼ 0:68 in the visible spectrum.

Thus, both, Mie theory and Rayleigh scattering must be taken
into account for modelling the skylight. This is as the air in the
atmosphere will account for a large fraction of the Rayleigh scatter-
ing whereas Mie theory is bound to apply to clouds and dust. Both
the Rayleigh and Mie scattered light compose the skylight and,
hence, we can write

EskyðkÞ ¼ ð1� pcÞERayleighðkÞ þ pcEmieðkÞ ð3Þ

where, k is the wavelength parameter, pc is the contribution of the
Mie scattering and EmieðkÞ and ErayleighðkÞ corresponds to the Rayleigh
scattered light. This equation would be further simplified as
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