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a b s t r a c t

Recently, Zhang et al. (2011) proposed a classifier based on Collaborative Representations (CR) with Reg-
ularized Least Squares (CRC-RLS) for image face recognition. CRC-RLS can replace Sparse Representation
(SR) based Classification (SRC) as a simple and fast alternative. With SR resulting from an l1-Regularized
Least Squares decomposition, CR starts from an l2-Regularized Least Squares formulation. Moreover, it
has an algebraic solution.

We extend CRC-RLS to the case where the samples or features are weighted. Particularly, we consider
weights based on the classification confidence for samples and the variance of feature channels. The
Weighted Collaborative Representation Classifier (WCRC) improves the classification performance over
that of the original formulation, while keeping the simplicity and the speed of the original CRC-RLS for-
mulation. Moreover we investigate into query-adaptive WCRC formulations and kernelized extensions
that show further performance improvements but come at the expense of increased computation time.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

For face recognition, Wright et al. (2009) pointed out the effec-
tiveness of representing newly observed faces as linear combina-
tions of previously observed ones. Usually, the problem is
formulated as one of finding the coefficients that minimize the
residual between a new sample and its linear reconstruction. The
residual is commonly measured as the least squares difference,
which allows for an algebraic solution. When all previous faces
or samples contribute to the optimal linear combination, one has
a so-called Collaborative Representation (CR) (Zhang et al., 2011).
Aside from the basic least squares criterion for the creation of such
optima, other constraints have been considered as well. For stabi-
lizing the coefficients of the least squares representation, one could
add a term that tries to minimize the l2-norm of the coefficients,
while still admitting an algebraic solution. Enforcing sparsity on
the solution leads to an l0-regularization, i.e. an l1-Regularized
Least Squares problem in practice, known as lasso (Tibshirani,
1996). Such adaptations yields a Sparse Representation (SR)
(Wright et al., 2009), a key element in compressed sensing. Indeed,
most signals admit a decomposition over a reduced set of signals
from the same class (Bruckstein et al., 2009). Unfortunately, there

no longer exists a known algebraic solution in that case. A com-
bined l1/l2 regularization renders the coefficients more robust
and enforces group sparsity (Zou and Hastie, 2005).

The resulting coefficients carry a meaning in that they reflect
the importance of each sample. The coefficients and resulting
residuals are used in the classification. The newly incoming sample
or ‘query’ is assigned to the class that has the minimum residual
error or the largest sum of coefficient magnitudes.

Here, we investigate the influence of weighting the samples and
features in the aforementioned representations, in particular in the
l2-Regularized Least Squares formulations with algebraic solutions.
In real classification tasks the training samples are not equally dis-
criminative. Moreover, the coefficients of some samples correlate
more closely with the correct prediction by the classifier. The same
holds for the feature channels, as some are more informative than
others for the classification process. One may also let depend the
weights on the particular query that is to be classified. We extend
our previous work (Timofte and Van Gool, 2012b) by addressing
such adaptive weightings and by investigating the corresponding
kernel extensions, as a means for further gains in classification
performance.

The remainder is organized as follows. Section 2 briefly reviews
the least squares based formulations. Section 3 presents weighted
variants, Section 4 adapts to query-specific weighting, and
Section 5 discusses the kernel trick. In Section 6 we describe the
classifiers based on these representations. Section 7 shows exper-
imental results, while Section 8 concludes the paper.
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Notations and assumptions. The training data is stacked column-
wise forming a matrix X ¼ ½x1; x2; . . . ; xm� 2 Rn�m with m 2 N n-
dimensional training samples. b 2 Rm denotes the vector of coeffi-
cients from the linear representation of a query sample y 2 Rn over
the (training) samples (X). We assume each sample to be zero
mean and to have unit length (the l2-norm is 1). By kxkp we denote
the lp-norm of a vector x; kxk is the Euclidean norm (or l2-norm),
XT is the transpose of matrix X, and X�1 the inverse. diagðxÞ is the
diagonal matrix with the vector x on the diagonal. I is the identity
matrix.

2. Least Squares formulations

We shortly review three of the best-known Regularized Least
Squares formulations.

The Ordinary Least Squares (OLS) solves:

b̂OLS ¼ argmin
b
ky� Xbk2 ð1Þ

If ðXT XÞ�1
exists we have as algebraic solution:

b̂OLS ¼ ðXT XÞ�1
XT y ð2Þ

The Collaborative Representation with Regularized Least Squares
(CR) (Zhang et al., 2011), solves:

b̂CR ¼ argmin
b
ky� Xbk2 þ kCRkbk2 ð3Þ

where kCR 2 R is a regulatory parameter. The algebraic solution
becomes:

b̂CR ¼ ðXT X þ kCRIÞ�1
XT y ð4Þ

By adding the l2 regularization we cope with the case where XT X is
singular and, moreover, we stabilize/robustify the solution and
make it less noise dependent.

The Sparse Representation (SR) (Wright et al., 2009) is obtained
by enforcing sparsity by means of l1-regularization instead of l2 as
for CR:

b̂SR ¼ argmin
b
ky� Xbk2 þ kSRkbk1 ð5Þ

where kSR 2 R is the Lagrangian regulatory parameter. For this prob-
lem, also known as lasso (Tibshirani, 1996), one does not have an
algebraic solution, but efficient optimization solvers are available,
like LARS (Efron et al., 2004), Feature Sign (Lee et al., 2006) or
L1LS (Kim et al., 2007).

By combining sparsity and robustness by means of joint l1 and l2

regularization we pursue group sparsity:

b̂EN ¼ argmin
b
ky� Xbk2 þ k2kbk2 þ k1kbk1 ð6Þ

a problem known as (naive) Elastic Net (EN) (Zou and Hastie, 2005),
where k1;2 are regulatory scalar parameters. ð1þ k2Þb̂EN gives the
compensated EN solution.

3. Weighted representations

In this section we review weighted extensions of the aforemen-
tioned least squares formulations.

Generalized Least Squares (GLS) generalizes the Ordinary Least
Squares (OLS) for cases with unequal variances or correlations be-
tween the observations. If y ¼ XbGLS þ � with zero mean residuals,
i.e. E½�jX� ¼ 0, and their variance is Var½�jX� ¼ X, GLS minimizes
their squared Mahalanobis length to estimate bGLS:

b̂GLS ¼ argmin
b
ðy� XbÞTX�1ðy� XbÞ ð7Þ

b̂GLS ¼ ðXTX�1XÞ
�1

XTX�1y ð8Þ

This simplifies to Weighted Least Squares (WLS) in case X is
diagonal.

Ridge Regression (RR), also known as Tikhonov regularization
(Tikhonov and Arsenin, 1977), solves:

b̂RR ¼ argmin
b
ky� Xbk2 þ kCRRbk2

b̂RR ¼ ðXT X þ CT
RRCRRÞ

�1
XT y ð9Þ

where to alleviate ill-posed problems, CRR 2 Rm�m is suitably cho-
sen. CRR 2 Rm�m is the Tikhonov matrix and enables to weight sam-
ples differently. RR simplifies to OLS or CR if CRR is null or a scaled
identity matrix, respectively.

A Generalized Weighted Collaborative Representation (WCR)
can have the following formulation:

b̂WCR ¼ argmin
b
ðy� XbÞTX�1

WCRðy� XbÞ þ kCWCRbk2 ð10Þ

b̂WCR ¼ ðXTX�1
WCRX þ CT

WCRCWCRÞ
�1

XTX�1
WCRy ð11Þ

Similar to GLS, XWCR gives the importance of each dimension, and
similar to RR, CWCR modulates the importance of each sample in
the solution.

Adding sparsity regularization (l1-norm) to WCR leads to a Gen-
eralized Weighted Elastic Net (WEN) formulation:

b̂WEN ¼ argmin
b

fðy� XbÞTX�1
WENðy� XbÞþ

kCWENbk2 þ kKWENjbjk1g
ð12Þ

where KWEN 2 Rm�m expresses the importance of each sample for
the l1 term. By adding the sparsity regularization we lose the advan-
tage of having a clean algebraic solution.

Other recent l1-regularized methods weight the coefficients in
relation to the covariances of the training samples, as in Weight
Fused Lasso (Daye and Jeng, 2009) or Weight Fused Elastic Net
(Fu and Xu, 2012). Other pairwise constraints are used in Group
Lasso (Yuan and Lin, 2006), Pairwise Elastic Net (Lorbert et al.,
2010), or Trace Lasso (Grave et al., 2011).

4. Adaptive weighted representations

In the previous section we formulated weighted representa-
tions. We can make a distinction between the way the weights
are set in the representation formulation:

(i) independent of the query,
(ii) adaptive to (dependent on) the query.

Independence of the query is the default case for weighted rep-
resentations. It means that the weights are learned (estimated)
from the training data or set without considering the specificity
of an arbitrary query. The dependent or adaptive approach uses
the specificity of the input query in the computation of the
weights, and thus adapts the weighted representation to the nat-
ure of the input.

When the weighting matrix (or residual variance in WLS) X is
not directly known, it can be estimated, as in Feasible Generalized
Least Squares (FGLS) (Little and Rubin, 2002), adapted to the query.
Here we consider the case of GLS. First, we can use OLS and obtain
the residuals u, and take for X the diagonal matrix of squared
residuals, diagðûOLSÞ2, and estimate b̂FGLS1 :

ûOLS ¼ y� Xb̂OLS; XOLS ¼ diagðûOLSÞ2 ð13Þ
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