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a b s t r a c t

Instance-based learning methods often suffer from problems related to high storage requirements, large
computational costs for searching through the stored instances to find the ones most similar to the que-
ries, and also sensitivity to noisy samples. In order to deal with these issues, various condensation algo-
rithms have been proposed in the literature to reduce the set of prototypes that need to be stored. In this
paper, we propose a new algorithm that uses a set of weights to directly control which prototypes have to
be discarded or survive. Instead of relying on indirect heuristics, it explicitly optimizes a bi-objective
index which incorporates the condensation rate and a measure of the classification inaccuracy as
reflected by the nearest neighbor rule. The proposed algorithm, referred to as DWP (Direct Weighted
Pruning), performs an efficient search using a simple genetic algorithm, which is however equipped with
three novel acceleration mechanisms to notably speed up its convergence. Experiments over a large num-
ber of datasets and comparisons against many other successful condensation algorithms, show that DWP
is very effective and achieves the highest classification accuracy along with competitive condensation
rates.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

One of the simplest but most effective non-parametric classifi-
cation methods in machine learning, is the k-Nearest Neighbor (k-
NN) rule. In its most basic variant it requires no explicit training,
but simply relies on the direct storage of the training prototypes
in a database. Subsequently, new queries are compared against this
database in order to assess their most likely class memberships.
However, there are certain concerns associated with the k-NN rule
as well as other instance-based classifiers that rely on the storage
of training data. Firstly, the need to retain the entire dataset in
some type of memory, poses a burden in the implementation of
the system. Secondly, having to search through all the stored data
patterns becomes very computationally inefficient for large data-
sets, even when fast retrieval algorithms are employed. Further-
more, since real-world datasets are often subjected to noisy
measurements, the classification performance may suffer from
the noisy and likely harmful prototypes stored. It has to be noted,
that these issues can also be the case either when the raw features
of a dataset are used directly, or when the raw data have been pre-
processed to generate new features (e.g., using a projection tech-
nique) or to select optimal feature subsets (e.g., using a filter or
wrapper approach). Although such feature pre-processing aims to
reduce the data dimensionality and also improve classification

rates, the above issues of data storage, search complexity and sam-
ple noise may still persist in large datasets.

In order to mitigate these problems, numerous data condensa-
tion (also referred to as instance/prototype reduction) methods
have been proposed, and the field has attracted notable attention
in the past few decades since the first methods were introduced
(Hart, 1968; Wilson, 1972; Chang, 1974). In general, data condensa-
tion methods intend to not only prune the number of data proto-
types, but simultaneously increase, where possible, the
classification accuracies by removing both superfluous and noisy
instances. A well known such method is the Edited Nearest Neigh-
bor (ENN) (Wilson, 1972) filtering algorithm, which has been fre-
quently used in various other condensation methods as a noise
pre-processing filter. Different methods employ diverse assump-
tions and mechanisms to facilitate instance removal. For example,
considering that the majority of the information needed to describe
the data distributions is provided by the samples close to the deci-
sion surfaces, various algorithms employ heuristics to distinguish
between border and non-border instances (Wilson and Martinez,
2000; Brighton and Mellish, 2002; Fayed and Atiya, 2009; Nikolai-
dis et al., 2012). Another group of methods that have become pop-
ular in the recent years are ones that model the data and their
characteristics using graphs. Examples include the Hit Miss Net-
works (HMN) (Marchiori, 2008), the Class Conditional Nearest
Neighbor (Marchiori, 2010) and Voronoi graphs (Toussaint and Poo-
ulsen, 1979). Instance Weight Learning (IWL) is used by another
category of methods, where weighting coefficients are assigned to
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every data instance. Although the majority of the IWL methods pur-
sue distance metric learning to improve the classification rates
(Paredes and Vidal, 2006a; Ricci and Avesani, 1999), some of them
target prototype reduction (Girolami, 2003; Paredes and Vidal,
2000, 2006b). Another type of condensation methods achieve in-
stance abstraction, where a new set of prototypes is generated to
replace the original dataset (Lam et al., 2002a,b; Geva and Sitte,
1991). Other condensation algorithms and heuristics can be found
in the recent reviewing works of Garcia et al. (2012) and Triguero
et al. (2012).

In this work, we introduce a novel algorithm, referred to as Di-
rect Weighted Pruning (DWP) that has certain distinct features and
advantages compared to existing methods. Firstly, it explicitly for-
mulates the two principal objectives of classification accuracy and
condensation rate, and this enables the entire procedure to be for-
mulated as a single multi-objective optimization problem. One un-
ique advantage resulting from such modeling is that one can
regulate directly the trade-off between the two antagonistic objec-
tives. Further, DWP employs an explicit modeling of simple binary
weights to establish the final decision making process about which
instances to retain and which to discard. These weights are directly
used for the measurement and quantification of both objectives
simultaneously, and therefore they enable the formation of a uni-
fied performance index. Finally, DWP is based on a highly efficient
optimization procedure. Although this is based on a very standard
evolutionary search, we have proposed three novel enhancing heu-
ristics that significantly accelerate the search. In Section 3, we
compare DWP with eight other state-of-the-art data condensation
algorithms for which we summarize their main characteristics, and
we analyze results across three synthetic and eighteen real-world
datasets of diverse characteristics.

The remaining of the paper is structured as follows. Section 2
describes in detail the proposed algorithm, and specifically the
weight modeling, the optimization and the speed up heuristics.
Section 3 presents experimental evaluations using the synthetic
and real-world datasets and comparisons between DWP and other
established reduction algorithms. Finally, Section 4 concludes the
work.

2. The proposed algorithm

We assume that we have a dataset X of n data prototypes x. Each
x is of d dimensions and is associated with a class label w(x). The
principal objective is to reduce X to a much smaller number of
m� n instances, that match the classification performance of X as
close as possible. As it is the norm in all previous works (Wilson
and Martinez, 2000; Brighton and Mellish, 2002; Nikolaidis et al.,
2012; Marchiori, 2008) for reasons of simplicity, we use the 1-NN
rule to measure the classification accuracy supported by the re-
duced dataset and drive the optimization procedure.

2.1. Instance weight modeling

The proposed model depends on a set of design parameters
which explicitly control which prototypes are removed and which
are retained. These parameters are defined as a set of n binary
weights w(x) e {0,1}, each corresponding to a prototype x e X. A
prototype x is discarded or preserved when its associated w(x) ob-
tains the value of zero or one, respectively. It should be noted, that
an alternative formulation of defining the range of each weight
would be to use continuous intervals [0,1]. However, such model-
ing would complicate the decision making unnecessarily, because
it would require subsequent thresholding to form the final decision
of whether a sample x should be discarded or not. This would also
require the setting of an optimal threshold parameter. Addition-

ally, the bi-objective optimization defined below would be made
very difficult to quantify and measure. Finally, the adopted binary
weight modeling naturally matches the discrete weight optimiza-
tion procedure we have employed (described in Section 2.2).

The above modeling allows us to optimize the entire weight
vector w e {0,1}n, such that the classification accuracy is compro-
mised minimally. The overall optimization is bi-objective. Firstly,
the condensation ratio which can be defined as

n�m
n
¼ 1� 1

n

X
x2X

wðxÞ ð1Þ

needs to be maximized, in order to remove as many instances as
possible. However, removing too many instances will deteriorate
the system’s performance. Therefore, the second objective is to
simultaneously maximize the overall classification rate.

A straightforward way for measuring this rate using the 1-NN
rule, is to use the ratio of the distance of x from its nearest friend
(where friends are defined as other instances in X from the same
class as x) to its nearest enemy (where enemies are instances in
X from different classes). In the absence of noise, if this ratio is less
than the unity, then the sample x is supported by X, otherwise it is
misclassified. However, with this proposed modeling, nearest
friends and enemies are not static, as their existence depends on
the current state of w. This is because all prototypes are involved
in the model optimization procedure. To incorporate the state of
w into the above modeling, we need to firstly express the nearest
friend and enemy of every x, as a function of w, according to

Fðx;wÞ ¼ argmin
z 2 X � fxg
wðzÞ ¼ wðxÞ

wðzÞ–0

jjz� xjj2

Eðx;wÞ ¼ argmin
z 2 X

wðzÞ–wðxÞ
wðzÞ–0

jjz� xjj2
ð2Þ

where F(x,w) is the nearest surviving neighbor of x, and E(x,w) its
nearest surviving enemy. Then, under w, the ratio

cðx;wÞ ¼ kx� Fðx;wÞk2

kx� Eðx;wÞk2
ð3Þ

is used to test whether x is classified correctly or not.
Ideally, to enforce maximal classification accuracy, the optimi-

zation would need to be subjected to the constraints of
cðx;wÞ < 1 for all x. However, this set of hard constraints cannot
be satisfied because of the noise, sparse sampling or the nature
of the dataset. Instead, we optimize accuracy in a soft way, by
using a smooth penalty function H[�] to penalize all cases with ra-
tios exceeding the unity in an aggregate way. A smooth penalty
curve allows for a better balancing of the two competitive objec-
tives and copes better with noise and data sparsity. To facilitate
the optimization we use a function, also shown in Fig. 1, defined as

H½k� ¼ 1
1þ expðað1� kÞÞ ð4Þ

The fixed parameter a controls the shape of the curve. If it is set
to a high value, the curve becomes more like a step function and
gives near zero or one penalty values to ratios just below or above
the unity, respectively.

Finally, the two objectives controlling condensation and accu-
racy can be combined within a single weighted-sum objective
function J(w) and optimized according to

min
w2f0;1gn

JðwÞ �
X
x2X

H½cðx;wÞ� þ k
n

X
x2X

wðxÞ ð5Þ
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