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a b s t r a c t

The fuzzy local information c-means (FLICM) algorithm, introduced by Krinidis and Chatzis (2010), was
designed to perform highly accurate segmentation of images contaminated with high-frequency noise.
This algorithm includes an extra additive term to the objective function of the fuzzy c-means (FCM),
called local descriptor fuzzy factor, allowing the labeling of a pixel to be influenced by its neighbors, thus
achieving a filtering effect. Further on, the authors of FLICM claim that their algorithm does not depend
on any trade-off parameter, which were present in all previous similar approaches. In this paper we
investigate the theoretical foundation of FLICM and reveal some critical issues. First of all, we show that
the iterative optimization algorithm proposed for the minimization of the FLICM objective function is not
suitable for the given problem, it does not minimize the objective function. Instead of that, FLICM com-
putes an FCM-like partition using distorted distances, according to the local context of each pixel, thus
performing a job that is similar to the so-called suppressed fuzzy c-means algorithm existing in the lit-
erature. Finally we reveal the presence of a possible trade-off in the definition of the local descriptor fuzzy
term, and the necessity of another factor to compensate against the size of the considered neighborhood.
Such algorithms can be effective in certain scenarios, which were documented by the authors, but a deep
investigation of the limitations would be beneficial.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Generally, the aim of image segmentation is to distinguish
objects from the background and different objects from each
other. The fuzzy c-means (FCM) algorithm (Bezdek, 1981) is a
very popular tool in image segmentation because it is simple
to comprehend and implement, but it frequently leads to unsat-
isfactory results, especially when it is employed to classify the
pixels according their intensity and the image is noisy. It is a
well-known fact, that an FCM algorithm employed to classify
the pixel intensities, represents a clustering based on global
information, because the position of pixels does not influence
its fuzzy memberships with respect to various clusters. During
the last two decades, a long series of modified FCM algorithms
were introduced (Pham and Prince, 1999; Pham, 2001; Ahmed
et al., 2002; Pham, 2003; Szilágyi et al., 2003; Chen and Zhang,
2004), to improve the accuracy of classification in the presence
of various types of noise. These algorithms attempted to involve
local information into the objective function, allowing the cate-
gorization of each pixel to be influenced by its neighborhood,
by its local context. Since the introduction of the fast and robust

solution of FGFCM (Cai et al., 2007), the trend of publishing lo-
cally improved robust versions of FCM has visibly intensified,
leading to another long series of recent solutions (Liao et al.,
2008, Wang et al., 2008, Wang et al., 2009, Despotovic et al.,
2010, Di Martino et al., 2010, Huang and Zhang, 2010, Li and
Shen, 2010, Ji et al., 2011, Li et al., 2011, Chattopadhyay et al.,
2011, Liu and Pham, 2012). These algorithms have been success-
fully integrated into applications in various domains: remote
sensing (Fan et al., 2009; Mishra et al., 2012; Gong et al.,
2013b; Kalaivani et al., 2013), analysis of dermoscopy images
(Zhou et al., 2009), color reduction (Schaefer and Zhou, 2009),
brain imaging (Caldairou et al., 2011; Liao and Zhang, 2011),
geophysics (Paasche et al., 2010), sea surface temperature mon-
itoring (Nascimento and Franco, 2009), and arrhythmia classifi-
cation (Ceylan et al., 2009).

Recently, Krinidis and Chatzis (2010) introduced the so-called
fuzzy local information c-means (FLICM) algorithm, which in-
cluded an additive term into the objective function of FCM, de-
signed to suppress high frequency noises from the image,
improving the robustness of the segmentation. As reported by its
authors, FLICM seems having accomplished its mission, it has re-
duced the number of misclassifications in certain image segmenta-
tion scenarios. However, a deeper insight into the problem can
reveal some critical issues concerning FLICM. The aim of this paper
is to analyze the theoretical foundation and functionality of FLICM,
within the bound of the theory of optimal systems.
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The rest of this paper is structured as follows: Section 2 takes
into account the most important works related to this study. Sec-
tion 3 gives an alternative optimization scheme of the FLICM objec-
tive function, using grouped coordinate minimization. Section 4
investigates the FLICM algorithm in its originally defined context.
Section 5 is a short review of algorithms built upon FLICM. The last
section concludes this study.

2. Background works

The fuzzy c-means clustering and the algorithms derived from
it, in their original introduction, use a wide variety of notations.
In this study, they are all translated to one language. Throughout
this whole paper, the partition matrix U has two indices, the first
one refers to the cluster, while the second one to the identity of
the input vector. Thus, fuzzy membership function uik describes
the degree to which vector (or pixel) with index k 2 f1;2; . . . ng
belongs to cluster with index i 2 f1;2; . . . cg. Indices i and j
always refer to clusters, while vectors (pixels) are addressed by
k and l.

2.1. Fuzzy c-means clustering

The FCM algorithm optimally partitions a set of object data
X ¼ fx1; x2; . . . ; xng into a previously set number of c clusters, solv-
ing the following minimization problem:

min
ðU;VÞ

JðFCMÞ
m ðU;V : XÞ ¼

Xn

k¼1

Xc

i¼1

um
ikkxk � v ik2

A

( )
; ð1Þ

where

� U ¼ fuikg; i ¼ 1 . . . c; k ¼ 1 . . . n, represents a fuzzy c-partition
matrix constrained by the probabilistic conditions 0 6 uik 6 1,
and

Pc
i¼1uik ¼ 1 8i ¼ 1 . . . c;

� V ¼ ðv1;v2; . . . vcÞ is the vector of unknown cluster centers (also
referred to as prototypes);
� m is the fuzzy exponent, the only parameter of the algorithm,

constrained by m > 1;
� kskA ¼

ffiffiffiffiffiffiffiffiffi
sT As
p

is the inner product norm induced by the positive
definite, symmetrical matrix A.

The minimization of JðFCMÞ
m , as presented in Bezdek (1981) and

Bezdek et al. (1987) is performed within the framework of grouped
coordinate minimization, which is a general iterative method.
Within this framework, each iteration is separated into two half
problems, or half steps (Pal et al., 1996):

Uðtþ1Þ ¼ arg min
U
fJðFCMÞ

m ðU;V ðtÞÞg ð2Þ

and

V ðtþ1Þ ¼ arg min
V
fJðFCMÞ

m ðUðtþ1Þ;VÞg: ð3Þ

The above half steps are called explicit ones, or analytically ex-
act half steps, if there exist explicit formulas Uðtþ1Þ ¼ WUðV ðtÞÞ and
V ðtþ1Þ ¼ WV ðUðtþ1ÞÞ for every half iterate. Such formulas in case of
the FCM algorithm are deduced from zero gradient conditions of
the objective function, using Lagrange multipliers.

In such optimization problems, there are also cases, when one
of the half steps or both of them can only be defined implicitly.
These cases require numerical optimization, usually solved via
Newton’s method.

The zero gradient conditions and Lagrange multipliers stand at
the foundation of the theorem of FCM clustering, formulated by
Bezdek (1981), which states that ðU;VÞ may minimize JðFCMÞ

m if
and only if:

Uðtþ1Þ ¼ WUðV ðtÞ;XÞ ¼ fuðtþ1Þ
ik g with ð4Þ

uðtþ1Þ
ik ¼ kxk � v ðtÞi k

�2=ðm�1Þ
APc

j¼1kxk � v ðtÞj k
�2=ðm�1Þ
A

8 i ¼ 1 . . . c; 8 k ¼ 1 . . . n ð5Þ

and

V ðtþ1Þ ¼ WV ðUðtþ1Þ;XÞ ¼ ðv ðtþ1Þ
i Þ with ð6Þ

v ðtþ1Þ
i ¼

Pn
k¼1 uðtþ1Þ

ik

� �m
xkPn

k¼1 uðtþ1Þ
ik

� �m 8i ¼ 1 . . . c: ð7Þ

After adequate initialization of cluster prototype values v ð0Þi ,
Eqs. (5) and (7) are alternately applied until cluster prototypes sta-
bilize, that is, kV ðtþ1Þ � V ðtÞk < e, where e represents a previously
defined small positive constant number. The expressions presented
in Eqs. (5) and (7) are necessary conditions to minimize JðFCMÞ

m . The
above algorithm is called the alternative optimization (AO) scheme
of FCM.

If we wish to defuzzify the solution, each object vector xk will be
assigned to the cluster with index wk where

wk ¼ arg max
i
fuðfinalÞ

ik ; i ¼ 1 . . . cg: ð8Þ

2.2. Suppressed fuzzy c-means clustering

The suppressed fuzzy c-means (s-FCM) algorithm was intro-
duced in Fan et al. (2003), having the declared goal of reducing
the execution time of FCM by improving the convergence speed,
while preserving its good classification accuracy. The s-FCM algo-
rithm is not optimal from a rigorous mathematical point of view,
as it does not minimize JðFCMÞ

m or any other known objective func-
tion. Instead of that, it modifies the AO scheme of FCM, by inserting
an extra computational step into each iteration, placed between
the partition update formula (5) and prototype update formula
(7). This new step deforms the partition (fuzzy membership func-
tions) according to the following rule:

lik ¼
1� aþ auik if i ¼ wk ¼ arg max

j
fujk; j ¼ 1 . . . cg

auik otherwise

(
; ð9Þ

where lik with any i ¼ 1 . . . c and k ¼ 1 . . . n represent the fuzzy
memberships obtained after suppression. During the iterations of
s-FCM, these suppressed membership values lik will replace uik in
Eq. (7).

Suppression can be explained in words as follows: in each
iteration, clusters compete for each input vector xk, and the
prototype situated closest (vwk

) wins the competition. Fuzzy
memberships of the given vector with respect to any non-win-
ner cluster i (i – wk) is proportionally suppressed via multiplica-
tion with the previously defined value of the suppression rate
a 2 ½0;1�, while the winner fuzzy membership is increased such
that the modified membership values lik still fulfil the probabi-
listic constraint.

In a previous paper Szilágyi et al. (2010a) we have shown, that
the proportional suppression of non-winner fuzzy memberships is
mathematically equivalent with a virtual reduction of the distance
between the winner cluster’s prototype and the given input vector.
There we proved that in any iteration, for any input vector xk and
its winner cluster with index wk there exists a virtually reduced
distance dwkk < dwkk ¼ kxk � vwk

k, for which

lwkk ¼
d�2=ðm�1Þ

wkk

d�2=ðm�1Þ
wkk þ

Pc
j¼1; j–wk

d�2=ðm�1Þ
jk

ð10Þ
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