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a b s t r a c t

In this paper we discuss the Spectral Support Estimation algorithm (De Vito et al., 2010) by analyzing its
geometrical and computational properties. The estimator is non-parametric and the model selection
depends on three parameters whose role is clarified by simulations on a two-dimensional space. The per-
formance of the algorithm for novelty detection is tested and compared with its main competitors on a
collection of real benchmark datasets of different sizes and types.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Support estimation emerged in the sixties in statistics with the
seminal works of Rényi and Sulanke (1963) and Geffroy (1964),
and in the last decades became crucial in different fields of ma-
chine learning and pattern recognition as, just to mention a few,
one class estimation (Schölkopf et al., 2001), novelty and anomaly
detection (Markou and Singh, 2003; Chandola et al., 2009). These
problems find applications in different domains where it is difficult
to gather negative examples (as it often happens in biological and
biomedical problems) or when the negative class is not well de-
fined (as in object detection problems in computer vision).

Support estimation deals with the following setting. The popu-
lation data are represented by d-dimensional column vectors of
features, but they live in a proper subset C � Rd distributed accord-
ing to some probability distribution pðxÞdvðxÞ, where dv is a suit-
able infinitesimal volume element of C. For example, C could be a
curve in Rd; dv is the arc length and pðxÞ is the density distribution
of the data on the curve. Both the set C and the distribution
pðxÞdvðxÞ are known only through a training set fx1; . . . ; xng of
examples drawn independently from the population according to
pðxÞdvðxÞ. The aim of support estimation is to find a subset
Cn � Rd such that Cn is similar to C, if n is large enough.

In this paper, we assume the set C is the support of the proba-
bility distribution q according to which the examples are drawn.

Then C is defined as the smallest closed subset of Rd with the prop-
erty that qðCÞ ¼ 1.

To this purpose we review the Spectral Support Estimation
algorithm introduced in De Vito et al. (2010) with an emphasis
on its geometrical and computational properties and on its applica-
bility to real novelty detection problems.

To have good estimators some geometrical a priori assumption
on C is needed. For example, if C is convex, a choice for Cn is the
convex hull of the training set, as first proposed in Dümbgen and
Walther (1996). If C is an arbitrary set with non-zero d-dimen-
sional Lebesgue measure, Devroye and Wise (1980) define Cn has
the union of the balls of center xi and radius � with � going to 0
when the number of data increases. A different point of view is ta-
ken by the so-called plug-in estimators. In such approach one first
provides an estimator of the probability density and then Cn is de-
fined as the region with high density (Cuevas and Fraiman, 1997).

However, in many applications the data approximatively live on a
low dimensional submanifold, whose Lebesgue measure is clearly
zero, and one may take advantage of this a priori information by using
some recent ideas about dimensionality reduction, as for example,
manifold learning algorithms (Donoho and Grimes, 2003; Belkin
et al., 2006, and references therein) and kernel Principal Component
Analysis (Schölkopf et al., 1998). Based on this idea, Hoffmann (2007)
proposes a new algorithm for novelty detection, which can be seen as
a support estimation problem. This point of view is further developed
in De Vito et al. (2010), where a new class of consistent estimators,
called Spectral Support Estimators (SSE), is proposed.

The contribution of this paper is threefold. First, we review the
SSE algorithm emphasizing its geometrical and computational
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aspects (while we refer the reader interested in its statistical prop-
erties to De Vito et al. (2010)). Second, we discuss the dependence
of the algorithms on its hyper-parameters with the help of a thor-
ough qualitative analysis on synthetic data. This analysis also al-
lows us to show the quality of the estimated support, which
adapt nicely and smoothly to the training data, similarly to kernel
PCA (Hoffmann, 2007). Third, we show the appropriateness of the
algorithm on a large choice of real data and compare its perfor-
mances against well known competitors, namely K-Nearest Neigh-
bours, Parzen windows (Tarassenko et al., 1995), one class Support
Vector Machines (Schölkopf et al., 2001), and kernel PCA for nov-
elty detection (Hoffmann, 2007). To make the match fair, for each
algorithm we select the optimal choice for the hyper-parameters
following a procedure developed in Rudi et al. (2012).

To have an intuition of the SSE algorithm, suppose C is a r-
dimensional linear subspace of Rd. Consider the d� d-matrix

T ¼
Z

C
xx0 pðxÞdx;

here the volume element dv of Cis simply the r-dimensional Lebes-
gue measure dx. It is easy to check that the null space of T is the
orthogonal complement of C in Rd, that is, C is the linear span of
all the eigenvectors of T with non-zero eigenvalues. Since a consis-
tent estimator of T is the empirical matrix Tn ¼ 1

n

Pn
i¼1xix0i, one can

define Cn as the linear span of the eigenvectors of Tn whose eigen-
value is bigger than a threshold k. As in supervised learning, the
thresholding ensures a stable solution with respect to the noise.
Now, if k goes to zero when n increases, Cn becomes closer and clo-
ser to C, providing us with a consistent estimator. Furthermore, to
test if a new point x of Rd belongs to C or not, a simple decision rule
is given by FnðxÞ ¼

Pr
‘¼1ðu0‘xÞ

2, where u1; . . . ;ur are the eigenvectors
spanning Cn. Indeed, 0 6 FnðxÞ 6 x0x for all x 2 Rd, but it is close to
x0x (that is, the norm of x is near to the projection of x over Cn) if
and only if x is near to C. Note that if Tn is replaced by the covariance
matrix, then Cn is nothing else than the principal component
analysis.

More in general, if C is not a linear subspace the above algo-
rithm does not work, as it happens in binary classification prob-
lems with linear Support Vector Machines if the two classes are
not linearly separated. This suggests the use the kernel trick which
requires a feature map U, mapping the input space Rd into the fea-
ture space H, with UðCÞ a linear subspace of H. This strong condi-
tion is satisfied by the separating reproducing kernels introduced in
De Vito et al. (2010).

The paper is organized as follows. Section 2 introduces the sep-
arating kernels by emphasizing their geometrical properties. In
Section 3 we review the SSE algorithm and in Section 4 we discuss
how the algorithm is influenced by the choice of the parameters,
supporting our theoretical analysis with simulations on synthetic
data. In Section 5 we compare SSE with other methods from the lit-
erature on a vast selection of real datasets. Section 6 is left to a final
discussion.

2. Separating kernels

We now set the mathematical framework, we discuss the role of
the separating kernels and we give some examples of separating
kernels.

2.1. The framework

We assume that the input space is Rd with the euclidean sca-
lar product x0t between two column vectors x and t. The popu-
lation lives on a closed subset C � Rd and is distributed
according to some probability density p only defined on C,
namely

pðxÞ > 0 8x 2 C and
Z

C
pðxÞdvðxÞ ¼ 1;

where again dv is the infinitesimal volume element of C. For any
measurable subset E of Rd, we set

qðEÞ ¼
Z

C\E
pðxÞdvðxÞ;

then q is a probability measure on Rd and C is the smallest closed
subset of Rd such that qðCÞ ¼ 1, namely C is the support of the mea-
sure q. In general, q does not have density with respect to the
Lebesgue measure of Rd, as it always happens if C is an r-dimen-
sional sub-manifold with r < d. Further, we assume the measure
q is unknown, but we have a training set fx1; . . . ; xng sampled inde-
pendently and identically distributed according to q.

Our aim is to find a closed subset Cn � Rd such that Cn is statis-
tically consistent, i.e., it becomes similar to C with high probability
when the number of examples n goes to infinity.

Since in the general case C is not a linear subspace, we consider
a suitable feature map U from the input space Rd into a Hilbert
space H, whose scalar product will be denoted by h�; �iH. As a com-
mon practice for kernel machines, we state the condition on the
feature map in terms of its reproducing kernel
Kðx; tÞ ¼ hUðxÞUðtÞiH. As usual, we identify H with the reproducing
kernel Hilbert space associated with K, so that the elements of H
are functions on Rd, the feature map is given by
UðxÞ ¼ Kð�; xÞ 2 H, and for any f 2 H and x 2 Rd; f ðxÞ ¼ hf ;UðxÞiH
(Steinwart and Christmann, 2008).

In the case of SSE we need to assume K satisfies the following
properties:

(i) Mercer: the map K : Rd � Rd ! R is continuous, i.e., K is a
Mercer kernel.

(ii) Normalization: for all x 2 X it holds that Kðx; xÞ ¼ 1.
(iii) Separability: for any closed subset T � Rd and any point

x R T there exists f 2 H such that hf ;UðxÞiH – 0 and
hf ;UðtÞiH ¼ 0 for all t 2 T .

As shown in De Vito et al. (2010) this assumption is crucial to prove
the statistical consistency of the SSE algorithm.

The requirement that K is a Mercer kernel is very natural for
kernel machines, whereas the normalization assumption simply
makes the computation easy and, as shown in De Vito et al.
(2010), the separating property is preserved after normalization.
The crucial requirement is the separability condition. Indeed, it im-
plies that

UðCÞ ¼ spanfUðxÞjx 2 Cg \UðRdÞ;

which means that UðCÞ is the intersection of a linear space of H and
UðRdÞ, here spanfUðxÞ jx 2 Cg is the closed subspace generated by
the family fUðxÞx2Cg.

Examples of separating kernels are given in De Vito et al. (2010),
here we list two general purpose kernels that can be applied on a
large class of problems:

(a) Laplacian (Abel) kernel:

Kðx; tÞ ¼ exp � j x� t j
c

� �
ð1Þ

where c > 0 and jx� tj is the euclidean norm in Rd;
(b) ‘1-kernel:

Kðx; tÞ ¼ exp �
Xd

j¼1

j xj � tj j =c
 !

ð2Þ

where c > 0 and xj and tj are the j-th component of the vectors x
and t, respectively.
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