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Breast density is a known risk factor for breast cancer. Here two classes of texture features, one based on
textons derived from local pixel intensity variation and one based on oriented tissue structure character-
istics are measured on different regions of the breast in an effort to clarify the potential contribution of
texture independent of local tissue density to estimate breast cancer risk. The region just behind the
nipple is found to be the most significant local region for estimating risk, but estimates based on the
entire breast perform better. Texton features are found to perform better than features based on oriented
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1. Introduction
1.1. Breast cancer prevalence and early detection

Breast cancer is the second most common cancer diagnosed in
women world wide. Around 1.38 million women across the world
were diagnosed with breast cancer in 2008, accounting for nearly a
quarter (23%) of all cancers diagnosed in women according to a re-
port from Cancer Research UK in 2011 (Cancer Research UK, 2011).
Breast cancer incidence in developed countries was generally high-
er than in developing countries, but breast cancer incidence has in-
creased in most countries over the last few decades, with the most
rapid increases occurring in the developing countries. In Australia,
1 in 8 women on average will develop breast cancer at some time
in their life but only 1 in 37 will die of breast cancer before the age
of 85 according to the report of Australian Institute of Health and
Welfare in 2012 (Australian Institute of Health and Welfare,
2012). According to Cancer Australia (Cancer Australia, 2013), the
number of newly diagnosed breast cancer cases in women in
2009 increased to 13,668 from 5317 in 1982. By 2020, it is esti-
mated that 17,210 new breast cancer cases will be diagnosed in
women in Australia.

Early detection is widely viewed as providing the best opportu-
nity for reducing the morbidity and mortality due to breast cancer.
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As a result, many countries provide breast cancer screening based
on mammography to facilitate early detection. The risk of breast
cancer is not equal for all women and so adjusting early detection
strategies according to the level of risk of an individual increases
the efficiency and reduces the cost of screening programs. Accord-
ingly, a good understanding of risk factors for breast cancer is vital.
Known risk factors include age, weight, size of the breast, geo-
graphical location, diet, alcohol consumption and many more
(McPherson et al., 2000). Of interest in this study are indicators
of risk manifest in screening mammograms.

1.2. Texture and breast cancer risk

Wolfe was the first to study the relationship between mammo-
graphic appearance and breast cancer risk (Wolfe, 1976a,b). He
proposed four breast pattern classes: N1,P1,P2, and DY and dem-
onstrated a substantial increase in breast cancer risk progressing
from N1 patterns to DY. N1 denotes a breast comprising mostly
fat; P1 denotes a breast with a prominent duct pattern but limited
in extent; P2 denotes an extended and prominent duct pattern;
and DY denotes an extremely dense duct pattern.

The observations by Wolfe were reproduced by some studies
(Wellings et al., 1975; Brisson et al., 1981; Boyd et al., 1984; Saftlas
et al., 1989). However, other studies did not reproduce odds ratios
as great as those reported by Wolfe and some even failed to find
evidence of a relationship between Wolfe’s breast patterns and
breast cancer risk (Egan and Mosteller, 1977; Whitehead et al,,
1985; Mendell et al., 1977).

The American College of Radiology has since introduced
new breast pattern categories known as the BI-RADS classes
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(Ame, 2003). BI-RADS classes are modified version of Wolfe classes,
shifting the focus from structure patterns to the amount and distri-
butions of dense tissue.

As the connection between breast tissue patterns and cancer
risk emerged, the computer-aided diagnosis community developed
related image analysis methods for determining risk. In an early
work, Magnin et al. (1986) used the spatial gray-level dependence
method (SGLDM) and gray level difference method (GLDM), which
were based on gray-level co-occurrence matrices, to quantify den-
sity variations in mammograms to characterize images into Wolfe
pattern classes for breast cancer risk evaluation. Caldwell et al.
(1990) computed fractal dimensions in mammograms to classify
them into the four Wolfe pattern classes. Tahoces et al. (1995) ex-
tracted texture features based on the Fourier transform, spatial
relationships among grey levels and absolute values of the grey
levels from three different regions of interest (ROIs) in cranio-
caudal (CC) view images to categorize mammogram images into
Wolfe pattern classes. Byng et al. (1996) extracted texture features
from fractal dimensions and grey-level histograms to classify
images according to a six-category classification (SCC). The year
after, the same group used texture features calculated from
regional skewness and fractal dimension to characterize images
into corresponding SCC categories (Byng et al., 1997). Karssemeijer
(1998) applied two classifiers with and without pectoral features
computed from grey-level histograms to categorize images into
four density pattern classes.

In 2003, Petroudi et al. (2003) proposed the application of fea-
tures extracted from textons generated from filter bank responses
to classify mammograms into the four BI-RADS classes. Later, the
same group used texton features generated from local N x N neigh-
borhoods to characterize images into BI-RADS classes (Petroudi
and Brady, 2006). Texton features from local N x N neighborhoods
outperformed the filter banks in their previous paper. More re-
cently, He et al., 2012 used textons to generate grey-level histo-
grams to classify images into Tabar and BI-RADS classes. More
details can be found in their previous work (He et al., 2009), where
the term “cluster center” is used to describe what is now com-
monly called “texton”. Karemore et al. (2012) calculated texture
features from Gaussian derivatives at four different scales to clas-
sify both cancer vs controls and Estrogen-Receptor (ER) subtype
specific classes (ER-positive vs ER-negative).

A key question in computer-aided risk assessment is whether
patterns relevant to breast cancer risk are concentrated in a partic-
ular region or spread throughout the breast. Huo et al. (2000, 2002)
consistently selected a ROI of 256 x 256 pixels from the central
breast region behind the nipple regardless of the breast size to
classify images into high or low risk groups. Texture features were
extracted from local gray-level variation analysis and an average A,
score of 0.91 was obtained in classifying BRCA1/BRCA2 mutation
carriers and non carriers. They also found that high risk images
tended to be dense and mammographic patterns appeared as a
coarse low contrast texture. Choosing the central region behind
the nipple is reasonable since this region is usually the densest part
of the breast and density is a significant indicator of breast cancer
risk (Huo et al., 2000; Li et al., 2008). In 2004, the same group, stud-
ied the effect of ROI size and location on breast cancer risk again
using the BRCA1/BRCA2 mutations to assign high and low risk
groups (Li et al., 2004). Five ROIs were selected manually from left
CC view images: (A) the central breast region immediately behind
the nipple, (B) the upper central breast region, (C) the lower central
breast region, (D) the center of the central breast regions, and (E)
the central left breast region. Their results showed that the size
of the ROI was not important but there was a statistically signifi-
cant decrease in classification performance as the ROI location var-
ied from the central region behind the nipple (A) to other locations
(B,C,D,andE). In 2008, they applied power law spectral analysis to

mammograms to classify BRCA1 and BRCA2 mutations carriers
(Li et al., 2008). They achieved an A, score of 0.9 in differentiating
30 BRCA1/BRCA2 gene mutation carriers and 60 age-matched low
risk women.

1.3. Risk measures and density dependence

There is no gold standard for breast cancer risk. Thus, in the
studies above, true breast cancer risk was replaced by schemes
for determining Wolfe texture pattern classes, BI-RADS classes,
SCC or BRCA1 and BRCA2 mutation carriers. All these are reason-
able, but are still surrogates for true breast cancer risk.

The approach we take is based on the co-occurrence of cancer in
both breasts. The American Cancer Society (American Cancer Soci-
ety, 2012), Cancer Australia (Cancer Australia, 2012) and Cancer UK
(Cancer Research UK, 2012) report a three- to five-fold increase of
risk for cancer in the breast if the contralateral breast is detected
with cancer. Accordingly, we take as high risk, images of the can-
cer-free breast from a screening visit in which cancer was detected
in the contralateral breast. Low risk images were taken as either
the right or left breast (selected randomly) from a screening visit
in which no cancer was detected in either breast.

In the studies cited above, the contribution of texture to risk
assessment cannot be separated entirely from the contribution of
density. In most imaging systems, the relationship between tissue
density and image intensity is non-linear (Wolbarst, 2004, Chapter
29). As a result, texture superimposed on dense tissue does not
produce the same response as the same texture superimposed on
fatty tissue. Hence, even if the local background is subtracted (a
natural by product of many processing steps), the texture mea-
sures may still carry density information. Since breast density is
known to correlate to breast cancer risk, these texture features
may simply be measuring density instead of providing a measure
of breast cancer risk independent of density.

In order to better separate the contribution of texture from the
contribution of density to risk assessment, image intensities in this
study are normalized so as to remove both the local mean intensity
and the local variance of intensity (Li et al., 2012).

Two classes of texture features are used; one based on N x N
neighborhood patches and one based on oriented tissue structures.
The former was chosen because of the success of these features re-
ported previously (Varma and Zisserman, 2003; Li et al., 2013) and
the latter ties texture features directly to biological structure and
therefore has the potential to deliver a causal result rather than
just an observational one. Although breast density is usually most
pronounced in the region just behind the nipple, whether this
holds for texture is not known. Accordingly, several regions of
the breast as well as the full breast were examined separately.

2. Data and preliminary processing
2.1. Image data

Mammograms for this study were selected from the publicly
available Digital Database of Screening Mammography (DDSM)
(Heath et al., 1998, 2001). The images selected were acquired by
Lumisys and Howtek machines at spatial resolutions ranging from
42 pm to 50 pm per pixel and depth ranging from 12 to 16 bits.
The data set used in this study consists of 320 left and right CC
view images. Of these, half were images from normal cases (no
cancer found in either breast at the current screening round) to
serve as the low risk group and half were images of the normal
breast from cases found to have cancer in the contralateral breast
at the current screening round to serve as the high risk group.
Images in the DDSM database are annotated with BI-RADS
category ratings and these were used to ensure a wide range of



Download English Version:

https://daneshyari.com/en/article/533917

Download Persian Version:

https://daneshyari.com/article/533917

Daneshyari.com


https://daneshyari.com/en/article/533917
https://daneshyari.com/article/533917
https://daneshyari.com

