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a b s t r a c t

We present a people counting system that, based on the information gathered by multiple cameras, is
able to tackle occlusions and lack of visibility that are typical in crowded and cluttered scenes. In our
method, evidence of the foreground likelihood in each available view is obtained through a bio-inspired
mechanism of self-organizing background subtraction, that is robust against well known foreground
detection challenges and is able to detect both moving and stationary foreground objects. This informa-
tion is gathered into a synergistic framework, that exploits the homography associated to each scene
view and the scene ground plane, thus allowing to reconstruct people feet positions in a single ‘‘feet
map’’ image. Finally, people counting is obtained by a k-NN classification, based on learning the count
estimates from the feet maps, supported by a tracking mechanism that keeps track of people movements
and of their identities along time, also enabling tolerance to occasional misdetections. Experimental
results with detailed qualitative and quantitative analysis and comparisons with state-of-the-art meth-
ods are provided on publicly available benchmark datasets with different crowd densities and environ-
mental conditions.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Localization and counting of people in image sequences is a
video surveillance task with useful applications. Indeed, people
counting can be used for several aims, such as to survey passenger
load in urban transportation (buses, ferries, railways, airports, etc.)
in order to facilitate the service planning, or to obtain detailed
collection of counting data of visitors and customers in public
structures (museums, libraries, etc.) and in commercial areas
(trade centers, supermarkets, etc.) in order to optimize the
resource management.

Certainly, people counting in image sequences is a complex
process. Indeed, objects in the scene interact, giving place to over-
laps that lead to the temporary loss of some of them, the so-called
‘‘occlusions’’. If a person is visually isolated in the images, localiza-
tion of its position and visual tracking are quite easy to obtain,
because the information usually exploited to identify him (e.g., col-
or distribution, shape, etc.) mainly remains unchanged when the
person moves. If the density of objects in the scene increases, also
occlusions intensify; consequently, a region of contiguous pixels of
the image foreground (blob) could not belong to a single person,
but to several persons. In such conditions of limited visibility and

crowded scenes it is extremely difficult to correctly detect and
track all the persons only based on the images coming from a sin-
gle camera (single-view). Using several views of the same scene
(multi-view) can allow to recover the information that could have
been hidden in a specific view.

Several people counting approaches have been proposed in the
past twenty years. They have been classified into detection-based
methods, that determine the number of people, as well as their
locations, by identifying individuals in the scene, and map-based
methods, that exploit the relationship between the number of peo-
ple and some features extracted from the images (Hou and Pang,
2011). More recently, they have been subdivided into individual-
centric methods, based on the detection, tracking, and counting
the number of tracks, and crowd-centric methods, based on the
analysis of global low-level features extracted from crowd imagery
to produce accurate counts (Chan and Vasconcelos, 2012).

Most of the literature concerning people counting relies on a
single-view approach, due to the wide availability of single surveil-
lance cameras and to the relative ease of implementation, since
they do not require calibrated cameras nor specific knowledge of
the scene geometry. Examples include Davies et al. (1995), Wren
et al. (1996), Zhao and Nevatia (2003), Rabaud and Belongie
(2006), Kilambi et al. (2008), Albiol et al. (2009), Chan et al.
(2009), Sharma et al. (2009), Choudri et al. (2009), Conte et al.
(2010), Patzold et al. (2010), Zeng and Ma (2010) and Subburaman
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et al. (2012). Also neural networks can be exploited for people
counting and crowd density estimation (Maddalena and Petrosino,
2012a), as, for instance, in Marana et al. (1998), Cho et al. (1999),
Kong et al. (2006) and Hou and Pang (2011). Generally, single-view
approaches present difficulties in the analysis of crowded scenes,
due to highly possible severe occlusions, and some of them are
not robust to illumination changes or have heavy computational
load.

Several research directions have been taken in order to handle
occlusions. For example, the adoption of cameras looking straight
down from the ceiling greatly helps reducing the occlusions (Albiol
et al., 2001; Kim et al., 2002; Velipasalar et al., 2006; Englebienne
and Krose, 2010). However, the application is limited to indoor
environments; moreover, either the acquired sequences still pres-
ent occlusions in all but the central portion of the image, or the
cameras have limited field of view (Harville, 2004). Also stereo
cameras have been considered, in order to exploit depth informa-
tion to project moving people to the ground plane, producing an
occupancy map and reducing occlusions (Beymer, 2000; Harville,
2004; Qiuyu et al., 2010; Yahiaoui et al., 2010; van Oosterhout
et al., 2011). The use of multiple cameras reveals as fundamental
for localizing and counting people in crowded environments. Mul-
ti-view approaches aim at reducing hidden image regions due to
occlusions, allowing at the same time to reconstruct the target
3D position based on the abundant information provided by differ-
ent observation points. Examples include Kim and Davis (2006),
Alahi et al. (2009), Krahnstoever et al. (2009), Stalder et al.
(2009), Ge and Collins (2010) and Ma et al. (2012). However, mul-
ti-view approaches usually require calibrated and synchronized
cameras, and have a complex structure, resulting in computation-
ally demanding algorithms.

In this work we propose an individual-centric system for ro-
bustly counting the number of people under occlusion through
multiple cameras with overlapping fields of view, characterized
to be neural-brain-like inspired. Compared to the other occlusion
handling methods, our multi-view approach relies on the learning
of motion templates in time, can adapt to detect both moving and
stationary people, and turns out to be robust to gradual lighting
variations, moving backgrounds, and cast shadows. The proposed
approach is based on the idea of performing an accurate moving
object detection in each available view and suitably fusing such
information in order to limit problems related to occlusions. To this
end, the neural approach to moving object detection recently pro-
posed in Maddalena and Petrosino (2013b) is adopted, where the
background model is built by learning in a self-organizing manner
image sequence variations, seen as trajectories of pixels in time.
The neural model is here adapted to compute ‘‘foreground likeli-
hood maps’’ from different views to be effectively merged together
in the multi-view setting. Information fusion is based on the
Homographic Occupancy Constraint (Khan and Shah, 2006), that
exploits the homography associated to each scene view and the
scene ground plane, in order to combine the visual information
available by different view-points. This allows to reconstruct peo-
ple feet positions on the scene ground plane in a single ‘‘feet map’’
image, through the homographies of the foreground likelihood
maps. Subsequent tracking in the feet map images is adopted to
support people counting, by keeping track of people movements
and of their identities along time. Finally, people counting is ob-
tained by supervised classification, based on learning the counts
from the feet maps.

The paper is organized as follows. Section 2 describes the mov-
ing object detection approach, that allows to obtain a ‘‘foreground
likelihood’’ information for each view, based on neural modeling
on motion templates. People localization, achieved by reconstruct-
ing people feet positions on the scene ground plane, is described in
Section 3, while tracking in the feet maps is described in Section 4,

and people counting is described in Section 5. Experimental results
and comparisons on different real datasets are reported in Sec-
tion 6, while concluding remarks are provided in Section 7.

2. Neural modelling on motion templates

Foreground detection in each single scene view is the basic
building block of our proposed people counting system and its
accuracy is crucial for the entire process. Therefore, we adopt here
the self-organizing background model for image sequences pre-
sented in Maddalena and Petrosino (2013b), whose high accuracy
and robustness to well known moving object detection challenges
has already been proven. Indeed, extensive experimental results on
daytime, night-time, and thermal sequences made available in
benchmark datasets (Maddalena and Petrosino, 2012b, 2013a)
have shown the high accuracy achieved in handling gradual light-
ing variations, moving backgrounds, cast shadows, bootstrapping,
moving and stationary objects, regardless of acquisition noise.
The neural model relies on extensive studies concerning the self-
organized learning behaviour of the brain, including Hebb’s learn-
ing law (Hebb, 1949); Marr’s theory of the cerebellar cortex (Marr,
1969); Willshaw, Buneman, and Longnet-Higgins’s non-holo-
graphic associative memory (Willshaw et al., 1969); Gaze’s studies
on nerve connections (Gaze, 1970); von der Malsburg and
Willshaw’s self-organizing model of retina-cortex mapping
(Willshaw and Von Der Malsburg, 1976); Amari’s mathematical
analysis of self-organization in the cortex (Amari, 1980);
Kohonen’s self-organizing map (Kohonen, 1982); and Cottrell and
Fort’s self-organizing model of retinotopy (Cottrell and Fort,
1986) (see Maddalena and Petrosino (2012a) for a survey). Here,
we provide a concise description of the model and describe how
it is adapted for the construction of the foreground likelihood
maps. The interested reader is referred to Maddalena and Petrosino
(2013b) for an extended description of the adopted approach, a
detailed analysis of parameter values, extensive experimental
results and comparisons with several state-of-the-art methods.

Given an image sequence Itf g, for each pixel x in the image do-
main D, we build a neural map consisting of n weight vectors
mi

tðxÞ; i ¼ 1; . . . ;n, which will be called a model for pixel x. If every
sequence frame has P rows and Q columns, the complete set of
models MtðxÞ ¼ ðm1

t ðxÞ; . . . ;mn
t ðxÞÞ for all pixels x of the tth

sequence frame It is organized as a 3D neural mapMt with P rows,
Q columns, and n layers, where each layer Li

t contains, for each
pixel x, the ith weight vector mi

tðxÞ.
As in Maddalena and Petrosino (2013a), an initial background

model E0 is estimated on a subset of K initial sequence frames (in
our tests K = 30 has been experimentally chosen) through temporal
median (Gloyer et al., 1995), and all weight vectors of the neural
map M0 related to a pixel x are initialized with the pixel bright-
ness value E0ðxÞ. Subsequent learning of the neural map allows
the background model to adapt to scene modifications, without
introducing the contribution of pixels that do not belong to the
background scene. The learning process consists of selectively
updating the model by changing the neural weights, according to
a visual attention mechanism of reinforcement. Specifically, tem-
porarily subsequent samples are fed to the network. At time t,
the value ItðxÞ of each incoming pixel x of the tth sequence frame
It is compared to the current pixel model MtðxÞ ¼ ðm1

t

ðxÞ; . . . ;mn
t ðxÞÞ, to determine the weight vector mb

t ðxÞ that best
matches it:

dðmb
t ðxÞ; ItðxÞÞ ¼ min

i¼1;...;n
dðmi

tðxÞ; ItðxÞÞ; ð1Þ

where the metric dð�; �Þ is suitably chosen according to the specific
color space being considered, e.g., the Euclidean distance of vectors
in the HSV color hexcone, as suggested in Fisher (1999).
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