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a b s t r a c t

In stream monitoring applications, it is important to identify rapidly abnormal events over bursty data
arrivals. By clustering similar conditions used in event detection, it is possible to reduce the number of
comparisons and improve the event detection performance. On the other hand, event detection based
on these clustered conditions can produce inaccurate results. Therefore, to use this method for critical
applications, such as patient monitoring, the number of event detection errors needs to be kept to within
a tolerable level. This paper presents an interval clustering algorithm that provides an error control
mechanism. The proposed algorithm enables a user to specify a permissible error bound, and then uses
the bound as a threshold condition for clustering. The simulation conducted based on real data showed
that the algorithm improves the performance of event detection by clustering conditions while observing
a user-specified error bound.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recently, applications that monitor streams of data items such
as sensor readings, network measurements, auction bids, stock ex-
changes, web page visits, etc., have attacted considerable interest.
In stream monitoring applications, it is important to identify
abnormal events over bursty data arrivals in a timely manner
(Babcock et al., 2002; Golab and Ozsu, 2003). For example, a
patients’ body status can be monitored using biosensors in a medical
center. In this application, abnormal events (e.g., life-threatening
events) should be detected on time and be notified to the medical
staff immediately. The delayed detection of critical events may not
be acceptable in this case. Similar examples can be found in network
intrusion detection, plant monitoring, and so on.

In many applications, the conditions used for event detection
can be represented as conjunctions of intervals. For example, Body-
Media’s Armband (Teller, 2004) predefines the possible body status,
such as sleeping, exercising, reading, etc. The application then uses
a range of biosensor data to identify the user’s body status. A body
status can be represented as a conjunction of intervals, each of
which describes a range of normal sensing values. For example,
the status ‘‘sleep’’ can be represented as interval conjunction of
body temperature [36.0, 37.0] (�C), heart bit rate [80, 120], gait
[0, 20], and others. An event that does not belong to any given sta-
tus can be considered abnormal.

The number of conditions can become large in real-world appli-
cations. In this case, to meet the real-time constraint over bursty
data arrivals, similar conditions can be clustered to reduce the
number of comparisons. Many existing algorithms can be used
for this purpose. Lingras et al. employed the rough set theory based
on the K-means clustering algorithm to reflect unknown overlapping
sets in clustering (Lingras and West, 2004). The same authors also
proposed the use of fuzzy clustering as an alternative (Lingras and
Yan, 2004). Asharaf et al. used the rough set theory in clustering
based on the leader clustering algorithm (Asharaf et al., 2006).
Regarding the dissimilarity measure, Souza and Carvalho (2004)
introduced an adaptive method based on the city-block distance,
where the dissimilarity between two intervals is measured adap-
tively by different weights. Chavent and Lechevallier (2002) used
the Hausdorff distance to compare interval data.

One the other hand, none of these algorithms provides a meth-
od to control the amount of classification errors resulting from
clustering. If event detection is performed based on the clustered
intervals, the number of detection errors should be kept to within
a tolerable bound. As an example, the medical center would limit
the percentage of errors to less than 1% to avoid detection results
with noise.

This paper proposes an interval clustering algorithm that pro-
vides an error control mechanism. The proposed algorithm enables
a user to specify a permissible error bound which can be defined as
a percentage of false positive errors that can occur during event
detection. Given an error bound, the algorithm uses it as a threshold
condition for clustering. In particular, when clustering a condition,
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the algorithm estimates the expected ratio of false positive errors
based on the distribution of input events. The new condition can
then be clustered only when its expected ratio is smaller than the
given error bound.

The remaining part of this paper is organized as follows. Sec-
tion 2 introduces the preliminary concepts relevant to interval
clustering. Section 3 describes an error estimation measure and
the interval clustering algorithm based on it. Section 4 provides
the experimental results of the proposed algorithm. Section 5 con-
cludes the discussion.

2. Preliminaries

Let X be a set of n conditions such that X ¼ fx1; . . . ; xng. A condi-
tion, xj, is represented as a vector of m intervals such that
xj ¼ ðx1

j ; x
2
j ; . . . ; xm

j Þ, where xt
j ¼ ½at

j ; b
t
j � 2 I ¼ f½a; b� : a; b 2 R; a 6 bg

ð1 6 t 6 mÞ. A partition, P ¼ ðC1;C2; . . . ;CkÞ of X into k equivalent
classes (k 6 n), can then be found. Fig. 1 gives an example of clus-
tering n conditions into k classes; the conditions in a class (or a
cluster) need not to be consecutive, as shown in the figure.

A cluster, Ci, is also represented as a vector. The reference vec-
tor, v i, can be obtained in various ways. In the K-means clustering
algorithm (MacQueen, 1967), k conditions are selected randomly
from X as the initial reference vectors. Each condition in X is then
added to its nearest cluster. To measure the dissimilarity between
two vectors, v i and xj, a simple L1 norm can be used, whose defini-
tion is given as follows. It is also called the city-block distance func-
tion in literature.

Dðxi; xjÞ ¼
Xm

t¼1

D0ðxt
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t
j Þ ð1Þ
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t
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After all conditions are added to their nearest clusters, the
K-means clustering algorithm updates the reference vectors
repeatedly to minimize the within-cluster sum of squares:

Xk

i¼1

Xk

xj2Ci

Dðv i; xjÞ

The algorithm continues until all v is converge.
On the other hand, in the leader clustering algorithm (Spath,

1980), the reference vectors can be created and updated dynami-
cally. Whenever a new condition, xnþ1, is given, the algorithm first
searches a cluster Ci closest to xnþ1, which is called a leader. The
algorithm then checks whether the distance Dðv i; xnþ1Þ is less than
or equal to a predefined threshold, T. If so, xnþ1 is clustered into Ci,
and then v i is updated with the new member. Otherwise, xnþ1 be-
comes a new leader, Ckþ1.

For monitoring applications, an incremental clustering algo-
rithm can be used more appropriately. Many cases exist where
the clusters need to be identified and updated gradually by moni-
toring on-the-fly input data. For example, the initial conditions of a
biomedical device might have wide intervals to accommodate the
diverse physiological status of each individual. On the other hand,
as it is continuously used, the intervals will be adjusted to specific
ranges of values to fit a user’s body status and improve the accu-
racy of event detection.

The leader clustering algorithm has the best time and space
complexity because it requires only a single scan of leaders to as-
sign a new condition. On the other hand, the threshold T is deter-
mined heuristically in this algorithm. In general, as T becomes
larger, more conditions can be clustered into leaders. Nevertheless,
a large T value will generate more detection errors if event detec-
tion is performed based on the clustered conditions. Therefore, to
use the algorithm for critical applications, such as patient monitor-
ing, it is necessary to add an error control mechanism to this
algorithm.

Now, let us discuss how errors can occur when the event detec-
tion is performed based on the clustered intervals. Suppose that
two intervals, x1 ¼ ½a1; b1� and x2 ¼ ½a2; b2� ða1 < a2 < b1 < b2Þ, are
added to a cluster whose reference vector v is a mean vector
½a; b�, where a ¼ ða1 þ a2Þ=2 and b ¼ ðb1 þ b2Þ=2. Consider that an
input event, e, falls into the region ½a1;aÞ. In this case, e is classified
as abnormal because it does not belong to v, but it is normal in
terms of x1. On the other hand, if e falls into ½a; a2Þ, it is considered
normal though it is actually abnormal in terms of x2. The former is
called the false positive error, whereas the latter is called the false
negative error.

As shown in the above, both types of errors can occur if the
mean vector is used for clustering. Alternatively, it is also possible
to use a min–max vector that covers all the intervals of the cluster’s
members as a reference vector (e.g., v ¼ ½a1; b2�). In this case, only
false negative errors will occur.

Note that false negative errors cannot be accepted in monitor-
ing applications. In the medical center example, life-threatening
events of patients whose sensor values lie outside the normal body
status must be classified as abnormal. Classifying those events as
normal is unacceptable. On the other hand, false positive errors
can be acceptable if the ratio of errors is tolerable, i.e., a small frac-
tion of false alarms might be permissible. The proposed algorithm
discussed below was designed to show only false positive errors
when clustering intervals for event detection.

3. Proposed algorithm

The proposed algorithm can be viewed as an extension of the
leader clustering algorithm, where an error control mechanism is
augmented to it. To support error control, the algorithm estimates
the amount of error incurred by clustering intervals. As a measure
of the estimation error, the percentage of false positive errors was
used, whose estimation is discussed in the first subsection. A
clustering algorithm, which uses the estimation measure for error
control, is then presented. To simplify our discussion, only
one-dimensional intervals were considered in the algorithm. The
algorithm was then extended to deal with multi-dimensional
intervals, which is discussed in the following subsection.

3.1. Error estimation

To avoid false negative errors, the proposed algorithm uses a
max–min vector to represent a cluster. Let each condition, xj be gi-
ven by a one-dimensional interval ½aj; bj�. A max–min vector v i for
cluster Ci is represented by ½ai; bi�, where ai ¼ maxxj2Ci

ðajÞ andFig. 1. Clustering n conditions into k classes.
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