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a b s t r a c t

We present a new visual representation for 3D action recognition from sequences of depth maps. In this
new representation, space and time axes are divided into multiple segments to define a 4D grid for each
depth map sequences. Each cell in the grid is associated with an occupancy value which is a function of
the number of space–time points falling into this cell. The occupancy values of all the cells form a high
dimensional feature vector, called Space–Time Occupancy Pattern (STOP). We then perform dimension-
ality reduction to obtain lower-dimensional feature vectors. The advantage of STOP is that it preserves
spatial and temporal contextual information between space and time cells while being flexible enough
to accommodate intra-action variations. Furthermore, we combine depth maps with skeletons in order
to obtain view invariance and present an automatic segmentation and time alignment method for on-line
recognition of depth sequences. Our visual representation is validated with experiments on a public 3D
human action dataset.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Human action recognition has a wide range of applications
including senior home monitoring, video surveillance, video index-
ing and search, human robot interaction, and entertainment, to
name a few. So far, most of the work has been focused on using
2D video sequences as input due to the ubiquity of conventional vi-
deo cameras. Recently, low cost, commercially available, RGB-D
sensors, such as the Microsoft Kinect, has rapidly driven the popu-
larity of the depth sensors. The real time depth maps captured by
this sensor is fostering the development of enhanced methodolo-
gies for human action recognition and interaction.

State-of-the-art algorithms for action recognition use silhou-
ettes, Space–Time Interest Point (STIP) and skeletons. Skeletons
can be obtained from motion capture systems using body joint
markers or directly tracked from depth maps. However, tracking
of body joints from depth maps is not a completely solved prob-
lem. For example, Li et al. (2010) reported that the joint positions
returned by the XBOX Kinect skeleton tracker are quite noisy. As
also reported by those authors, for 3D action recognition, the per-
formance of their method using joint position was worse than

using bag of 3D points. In addition, most of the current real-time
depth cameras can only produce coarse and noisy depth maps,
making skeleton tracking even more challenging.

Recently, some works have been published to address action
recognition from depth map sequences. The work in Li et al.
(2010) uses the silhouettes projected onto the coordinate planes
for the depth maps in any given frame, and sample a small set of
3D points, which are the interest points. For each interest point,
they use the 3D coordinates as feature descriptor. The bag (collec-
tion) of these points constitutes the visual representation of the
frame. The dissimilarity between two depth maps is computed
by the Hausdorff distance between the two sets of interest points.
One limitation of this approach is that the spatial context informa-
tion between interest points is lost. Furthermore, due to noise and
occlusions in the depth maps, the silhouettes viewed from the side
and from the top may not be very reliable. This makes it very dif-
ficult to robustly sample the interest points given the geometry
and motion variations between different persons. This is probably
why they reported low recognition accuracy for the cross-subject
test which is much worse than the accuracy attained with the
other two non-cross-subject tests presented in their paper.

In Yang et al. (2012), propose a new type of feature based on po-
sition differences of joints, called EigenJoints, which combine action
information including static posture, motion, and offset. They em-
ploy the Naïve–Bayes-Nearest-Neighbor classifier for multi-class
action classification and also explore the number of frames
that are needed to classify an action in a depth sequence. In
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Yang et al. (2012), project depth maps onto three orthogonal
planes and accumulate global activities across entire video
sequences to generate the Depth Motion Maps (DMM). Histograms
of Oriented Gradients (HOG) are then computed from DMM as the
representation of an entire action video. These off-line methods
considers sequences segmented out in start and end frames for
classifying the entire sequence.

Our approach presents a new feature called Space–Time Occu-
pancy Pattern (STOP) where depth sequences is represented in a
4D space–time grid and uses a saturation scheme to enhance the
roles of the sparse cells which typically consist of points on the sil-
houettes or moving parts of the body. These cells contain impor-
tant information for action recognition and we show that the
feature vectors obtained by using this scheme perform much better
than the original histogram vectors without saturation. For com-
parison purpose, we present an off-line classification scheme using
our STOP features for classifying entire sequences. In addition, we
propose an on-line classification scheme, where an action graph
based system is used to learn a statistical model for each action
class and use a state machine to segment long depth sequences
using a neutral pose classifier.

We evaluated our technique performing several experiments in
the public MSR Action3D Dataset (Li et al., 2010). The experiments
show that our technique achieves recognition accuracy compara-
ble to those obtained by existing off-line methods. Furthermore,
we present results for unsegmented depth sequences to show per-
formance of our system for on-line classification.

The remainder of the paper is organized as follows: Section 2
briefly reviews related works. Section 3 describes our STOP fea-
tures and classification scheme. Experimental results are shown
in Section 4 and, finally, Section 5 presents our conclusions and fu-
ture work directions.

2. Related work

The action recognition methods can be classified either as glo-
bal or as local methods. The methods in the first class use global
features such as silhouettes (Lv et al., 2007; Li et al., 2008) and
space–time volume information (Gorelick et al., 2007; Yilmaz
and Shah, 2005). The methods in the second class use local features
for which a set of interest points are extracted from a video and a
feature descriptor is computed for each interest point. Those lo-
cally extracted features are used to characterize actions for recog-
nition (Dollar et al., 2005; Sun et al., 2009). We refer the reader to
the excellent survey in Weinland et al. (2011) on action represen-
tation, segmentation and recognition.

The amount of work on action recognition from 3D data has
been quite limited when compared to those that use 2D data,
due to the difficulty in acquisition of 3D data acquisition.

One way to obtain 3D data is by using marker-based motion
capture systems (MoCap). Such systems capture the 3D positions
of markers which are positioned as close as possible to the joints
of the body of a performer. Joint positions captured by such sys-
tems are, in general, quite accurate. One dataset obtained with a
MoCap system can be downloaded from http://mocap.cs.cmu.edu
(2012). Lv and Nevatia (2006) used this dataset for action recogni-
tion experiments where joint positions were used as the basic fea-
tures, while Vieira et al. (2012) showed that joint distance matrices
provide invariant features for classifying MoCap data. Han et al.
(2010) developed a technique to learn a low-dimensional subspace
from the high dimensional space of joint positions, and performed
action recognition in the learned low-dimensional space.

A second way to obtain 3D data is to use multiple 2D video
streams to reconstruct 3D information. Huang et al. (2005) devel-
oped a system that uses multiple omni-directional cameras to

capture a scene and to reconstruct the 3D volumetric data with a
visual-hull based technique (Laurentini, 1994). They also proposed
a 3D shape context representation for action recognition.

Another visual-hull based technique used for 3D volumetric
reconstruction is proposed by Weinland (2006). They used motion
history volumes for action recognition. Similar to Weinland (2006),
Gu et al. (2010) developed a system to create volumetric data from
multiple views of a scene. They also recovered the joint positions
which were used as features for action and gait recognition.

The third way to obtain 3D data is using depth sensors. One of
the existing types of depth sensors is based on the time-of-flight
principle (Iddan, 2001). Such sensors are called time-of-flight cam-
eras. These cameras have been used in several recognition systems
such as hand gesture recognition (Liu et al., 2004) and template
matching of 3D articulated hands (Breuer et al., 2007). Another
type of depth sensor is based on structured light patterns. A large
number of systems that use visible structured light patterns exists,
of which Malassiotis et al. (2001) is a typical example.

Visible light patterns have a drawback that much of the visual
content of a scene is in the visible spectrum, and the projection be-
comes quite invasive and disrupts several applications. Infra-red
structured lights Ypsilos et al. (2004) have thus become an attrac-
tive alternative. Recently, Microsoft released a depth camera,
called Kinect, which is based on the projection of infrared struc-
tured pattern. Li et al. (2010) developed a technique for action rec-
ognition from depth maps captured by a depth camera similar to
Kinect, and produced a dataset with various people performing dif-
ferent actions. State-of-the-art results on this dataset are presented
in Yang et al. (2012), Yang et al., 2012. In this work we also use the
same dataset, both for validation and for comparative purposes.

3. Space–Time Occupancy Patterns

Our visual representation is in part inspired on the well known
occupancy grid approach, which is commonly used for robot navi-
gation (Elfes, 1989). A 2D plane or 3D space is divided into a grid
where to each cell is assigned a probability indicating the certainty
of its occupation. To construct our visual representation, we con-
sider a sequence (in time) of depth data acquired from a person
performing an action as a set

A ¼ fðxi; yi; zi; tiÞ; i ¼ 1; . . . ;Ng; ð1Þ

into a space–time box B, where the fourth dimension is the frame
index ti, which indicates the time of acquisition. This space–time
box is then partitioned into a four-dimensional grid with m 4D cells.
Let x; y; z, and t denote the four axes, B � R4 denotes the space–time
box and denote by nx; ny;nz, and nt the number of segments divided
uniformly along x; y; z, and t axes, respectively. Then, B is partitioned
into a grid with m 4D cells. We use ci to denote the ith cell. The set
of cells is called a partition, denoted as C ¼ fc1; . . . ; cmg. For each cell
ci, we denote by Ai its intersection with the set of four-dimensional
points A, that is, Ai ¼ A \ ci. The occupancy value of ci is defined as

PðciÞ ¼
1; if jAijP p
jAi j
p ; otherwise

(
; ð2Þ

where p is a predefined saturation parameter, empirically selected
to maximize recognition accuracy. For each cell that contains p or
more points, its occupancy value is set to the maximum value of
1.0. The reason for this saturation scheme is because the number
of points contained in a nonempty cell may be as small as 1, and
as large as several thousands. For a typical sequence, the majority
of the nonempty cells contains only a few hundred points. On the
one hand, if the histogram is used directly without saturation, the
cells that contain a small number of points would not play any sig-
nificant role in the classification step since their values would be
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